Endothelial Cell Activation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

M. Luisa Iruela-Arispe

ABSTRACT

The initiation of the angiogenic cascade from a pre-existent vascular network requires the selective departure of individual endothelial cells from differentiated capillaries. The process entails the activation of specific signaling pathways that enable endothelial cells to exit their vessel of origin, invade the underlying stroma and initiate a new vascular sprout. Two major signaling pathways: VEGF and Notch, coordinate this process to select a subset of leading endothelial cells, referred to as tip cells. These cells display long filopodia and are highly migratory, but remain linked to their followers, the stalk cells. The stalk cells constitute the body of the sprout and proliferate in response to VEGF increasing the length of the incipient capillary. It is the coordination of Notch and VEGF signaling that regulates the extent to which cells become leaders (tip cells) and which become followers (stalk cells). Activation of Notch represses the tip cell in favor of the stalk cell phenotype, in part, by regulating the levels of VEGFR2. The resolution of the endothelial activation phase requires synthesis and organization of the basement membrane and the recruitment of pericytes and smooth muscle cells. This chapter focuses on the molecular regulation of these signaling pathways, and it contrasts our current understanding of endothelial cell activation in development and in disease. More... »

PAGES

35-43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-71518-6_3

DOI

http://dx.doi.org/10.1007/978-0-387-71518-6_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050921435


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jonsson Comprehensive Cancer Center, University of California, 90095, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Jonsson Comprehensive Cancer Center, University of California, 90095, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iruela-Arispe", 
        "givenName": "M. Luisa", 
        "id": "sg:person.012267523157.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267523157.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "The initiation of the angiogenic cascade from a pre-existent vascular network requires the selective departure of individual endothelial cells from differentiated capillaries. The process entails the activation of specific signaling pathways that enable endothelial cells to exit their vessel of origin, invade the underlying stroma and initiate a new vascular sprout. Two major signaling pathways: VEGF and Notch, coordinate this process to select a subset of leading endothelial cells, referred to as tip cells. These cells display long filopodia and are highly migratory, but remain linked to their followers, the stalk cells. The stalk cells constitute the body of the sprout and proliferate in response to VEGF increasing the length of the incipient capillary. It is the coordination of Notch and VEGF signaling that regulates the extent to which cells become leaders (tip cells) and which become followers (stalk cells). Activation of Notch represses the tip cell in favor of the stalk cell phenotype, in part, by regulating the levels of VEGFR2. The resolution of the endothelial activation phase requires synthesis and organization of the basement membrane and the recruitment of pericytes and smooth muscle cells. This chapter focuses on the molecular regulation of these signaling pathways, and it contrasts our current understanding of endothelial cell activation in development and in disease.", 
    "editor": [
      {
        "familyName": "Figg", 
        "givenName": "William D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Folkman", 
        "givenName": "Judah", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-71518-6_3", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-71517-9", 
        "978-0-387-71518-6"
      ], 
      "name": "Angiogenesis", 
      "type": "Book"
    }, 
    "keywords": [
      "stalk cells", 
      "tip cells", 
      "stalk cell phenotype", 
      "major signaling pathways", 
      "new vascular sprouts", 
      "activation of Notch", 
      "endothelial cells", 
      "recruitment of pericytes", 
      "molecular regulation", 
      "endothelial cell activation", 
      "cell activation", 
      "individual endothelial cells", 
      "signaling pathways", 
      "long filopodia", 
      "smooth muscle cells", 
      "cell phenotype", 
      "vascular sprouts", 
      "muscle cells", 
      "pathway", 
      "current understanding", 
      "angiogenic cascade", 
      "cells", 
      "activation", 
      "Notch", 
      "vessel of origin", 
      "basement membrane", 
      "VEGF", 
      "vascular network", 
      "sprouts", 
      "filopodia", 
      "activation phase", 
      "phenotype", 
      "regulation", 
      "cascade", 
      "recruitment", 
      "membrane", 
      "VEGFR2", 
      "pericytes", 
      "levels of VEGFR2", 
      "initiation", 
      "origin", 
      "stroma", 
      "understanding", 
      "response", 
      "process", 
      "subset", 
      "synthesis", 
      "development", 
      "levels", 
      "body", 
      "disease", 
      "length", 
      "extent", 
      "organization", 
      "chapter", 
      "part", 
      "resolution", 
      "coordination", 
      "capillaries", 
      "network", 
      "vessels", 
      "favor", 
      "phase", 
      "departure", 
      "leaders", 
      "followers"
    ], 
    "name": "Endothelial Cell Activation", 
    "pagination": "35-43", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050921435"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-71518-6_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-71518-6_3", 
      "https://app.dimensions.ai/details/publication/pub.1050921435"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_320.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-0-387-71518-6_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-71518-6_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-71518-6_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-71518-6_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-71518-6_3'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      90 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-71518-6_3 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nf20d9a0019c24254af36d2f07943308a
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description The initiation of the angiogenic cascade from a pre-existent vascular network requires the selective departure of individual endothelial cells from differentiated capillaries. The process entails the activation of specific signaling pathways that enable endothelial cells to exit their vessel of origin, invade the underlying stroma and initiate a new vascular sprout. Two major signaling pathways: VEGF and Notch, coordinate this process to select a subset of leading endothelial cells, referred to as tip cells. These cells display long filopodia and are highly migratory, but remain linked to their followers, the stalk cells. The stalk cells constitute the body of the sprout and proliferate in response to VEGF increasing the length of the incipient capillary. It is the coordination of Notch and VEGF signaling that regulates the extent to which cells become leaders (tip cells) and which become followers (stalk cells). Activation of Notch represses the tip cell in favor of the stalk cell phenotype, in part, by regulating the levels of VEGFR2. The resolution of the endothelial activation phase requires synthesis and organization of the basement membrane and the recruitment of pericytes and smooth muscle cells. This chapter focuses on the molecular regulation of these signaling pathways, and it contrasts our current understanding of endothelial cell activation in development and in disease.
7 schema:editor N9210510c21184af8bdd9270964e94f63
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N785027e07d7149bab8aa5541edd14f72
11 schema:keywords Notch
12 VEGF
13 VEGFR2
14 activation
15 activation of Notch
16 activation phase
17 angiogenic cascade
18 basement membrane
19 body
20 capillaries
21 cascade
22 cell activation
23 cell phenotype
24 cells
25 chapter
26 coordination
27 current understanding
28 departure
29 development
30 disease
31 endothelial cell activation
32 endothelial cells
33 extent
34 favor
35 filopodia
36 followers
37 individual endothelial cells
38 initiation
39 leaders
40 length
41 levels
42 levels of VEGFR2
43 long filopodia
44 major signaling pathways
45 membrane
46 molecular regulation
47 muscle cells
48 network
49 new vascular sprouts
50 organization
51 origin
52 part
53 pathway
54 pericytes
55 phase
56 phenotype
57 process
58 recruitment
59 recruitment of pericytes
60 regulation
61 resolution
62 response
63 signaling pathways
64 smooth muscle cells
65 sprouts
66 stalk cell phenotype
67 stalk cells
68 stroma
69 subset
70 synthesis
71 tip cells
72 understanding
73 vascular network
74 vascular sprouts
75 vessel of origin
76 vessels
77 schema:name Endothelial Cell Activation
78 schema:pagination 35-43
79 schema:productId N1cc864eece8f4dc18b23ac182d2bb2fe
80 Na2fc08ef99d144919d5c5855a03b209c
81 schema:publisher N4df9db32ed6649e089b589f0db3c7227
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050921435
83 https://doi.org/10.1007/978-0-387-71518-6_3
84 schema:sdDatePublished 2022-10-01T06:56
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N7c99dc78d90044dc90e29430cf1de6ef
87 schema:url https://doi.org/10.1007/978-0-387-71518-6_3
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N1cc864eece8f4dc18b23ac182d2bb2fe schema:name dimensions_id
92 schema:value pub.1050921435
93 rdf:type schema:PropertyValue
94 N2f36323a73c1473188ddfb3cd572f58c rdf:first Ne659558b020740a1b1561b754947f984
95 rdf:rest rdf:nil
96 N4df9db32ed6649e089b589f0db3c7227 schema:name Springer Nature
97 rdf:type schema:Organisation
98 N785027e07d7149bab8aa5541edd14f72 schema:isbn 978-0-387-71517-9
99 978-0-387-71518-6
100 schema:name Angiogenesis
101 rdf:type schema:Book
102 N7c99dc78d90044dc90e29430cf1de6ef schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N9210510c21184af8bdd9270964e94f63 rdf:first N9fac8d66372c4cc7bc0e3bb4f366cb6e
105 rdf:rest N2f36323a73c1473188ddfb3cd572f58c
106 N9fac8d66372c4cc7bc0e3bb4f366cb6e schema:familyName Figg
107 schema:givenName William D.
108 rdf:type schema:Person
109 Na2fc08ef99d144919d5c5855a03b209c schema:name doi
110 schema:value 10.1007/978-0-387-71518-6_3
111 rdf:type schema:PropertyValue
112 Ne659558b020740a1b1561b754947f984 schema:familyName Folkman
113 schema:givenName Judah
114 rdf:type schema:Person
115 Nf20d9a0019c24254af36d2f07943308a rdf:first sg:person.012267523157.16
116 rdf:rest rdf:nil
117 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
118 schema:name Biological Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biochemistry and Cell Biology
122 rdf:type schema:DefinedTerm
123 sg:person.012267523157.16 schema:affiliation grid-institutes:grid.19006.3e
124 schema:familyName Iruela-Arispe
125 schema:givenName M. Luisa
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267523157.16
127 rdf:type schema:Person
128 grid-institutes:grid.19006.3e schema:alternateName Jonsson Comprehensive Cancer Center, University of California, 90095, Los Angeles, CA, USA
129 schema:name Jonsson Comprehensive Cancer Center, University of California, 90095, Los Angeles, CA, USA
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...