Introduction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Yihong Gong , Wei Xu

ABSTRACT

The term machine learning covers a broad range of computer programs. In general, any computer program that can improve its performance at some task through experience (or training) can be called a learning program [1]. There are two general types of learning: inductive, and deductive. Inductive learning aims to obtain or discover general rules/facts from particular training examples, while deductive learning attempts to use a set of known rules/facts to derive hypotheses that fit the observed training data. Because of its commercial values and variety of applications, inductive machine learning has been the focus of considerable researches for decades, and most machine learning techniques in the literature fall into the inductive learning category. In this book, unless otherwise notified, the term machine learning will be used to denote inductive learning. More... »

PAGES

1-11

Book

TITLE

Machine Learning for Multimedia Content Analysis

ISBN

978-0-387-69938-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-69942-4_1

DOI

http://dx.doi.org/10.1007/978-0-387-69942-4_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013664582


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Gong", 
        "givenName": "Yihong", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Wei", 
        "type": "Person"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "The term machine learning covers a broad range of computer programs. In general, any computer program that can improve its performance at some task through experience (or training) can be called a learning program [1]. There are two general types of learning: inductive, and deductive. Inductive learning aims to obtain or discover general rules/facts from particular training examples, while deductive learning attempts to use a set of known rules/facts to derive hypotheses that fit the observed training data. Because of its commercial values and variety of applications, inductive machine learning has been the focus of considerable researches for decades, and most machine learning techniques in the literature fall into the inductive learning category. In this book, unless otherwise notified, the term machine learning will be used to denote inductive learning.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-69942-4_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-69938-7"
      ], 
      "name": "Machine Learning for Multimedia Content Analysis", 
      "type": "Book"
    }, 
    "name": "Introduction", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-69942-4_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "411849100fe6fbeeb27b997d52192a8e8da385218fb6ebdbaac8343d858223b6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013664582"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-69942-4_1", 
      "https://app.dimensions.ai/details/publication/pub.1013664582"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000023.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-0-387-69942-4_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-69942-4_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-69942-4_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-69942-4_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-69942-4_1'


 

This table displays all metadata directly associated to this object as RDF triples.

58 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-69942-4_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N523f8546e1cd4b0bb09557af1494b8a9
4 schema:datePublished 2007
5 schema:datePublishedReg 2007-01-01
6 schema:description The term machine learning covers a broad range of computer programs. In general, any computer program that can improve its performance at some task through experience (or training) can be called a learning program [1]. There are two general types of learning: inductive, and deductive. Inductive learning aims to obtain or discover general rules/facts from particular training examples, while deductive learning attempts to use a set of known rules/facts to derive hypotheses that fit the observed training data. Because of its commercial values and variety of applications, inductive machine learning has been the focus of considerable researches for decades, and most machine learning techniques in the literature fall into the inductive learning category. In this book, unless otherwise notified, the term machine learning will be used to denote inductive learning.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nf9833aecd3974264970433fff9ba78c3
11 schema:name Introduction
12 schema:pagination 1-11
13 schema:productId Nce443ec3b9764ca8a06eda03bdf1a4a0
14 Nd8421cf40cb84ca4ae5b25d1157ca99d
15 Ne34f34f386eb4c7ab93ffd87e3ee1b4d
16 schema:publisher Nadb43c5c8af0454382e1cb2292396102
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013664582
18 https://doi.org/10.1007/978-0-387-69942-4_1
19 schema:sdDatePublished 2019-04-15T23:37
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher Nec56d488b0904b6eb98aed66981bd6af
22 schema:url http://link.springer.com/10.1007/978-0-387-69942-4_1
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N44817862ce0642aba7c2ced2976e01d1 schema:familyName Xu
27 schema:givenName Wei
28 rdf:type schema:Person
29 N523f8546e1cd4b0bb09557af1494b8a9 rdf:first N808c74046b4a404388f14de66835ad0e
30 rdf:rest N883da0ac174a4135a1cf592c3ac6d598
31 N808c74046b4a404388f14de66835ad0e schema:familyName Gong
32 schema:givenName Yihong
33 rdf:type schema:Person
34 N883da0ac174a4135a1cf592c3ac6d598 rdf:first N44817862ce0642aba7c2ced2976e01d1
35 rdf:rest rdf:nil
36 Nadb43c5c8af0454382e1cb2292396102 schema:location Boston, MA
37 schema:name Springer US
38 rdf:type schema:Organisation
39 Nce443ec3b9764ca8a06eda03bdf1a4a0 schema:name doi
40 schema:value 10.1007/978-0-387-69942-4_1
41 rdf:type schema:PropertyValue
42 Nd8421cf40cb84ca4ae5b25d1157ca99d schema:name dimensions_id
43 schema:value pub.1013664582
44 rdf:type schema:PropertyValue
45 Ne34f34f386eb4c7ab93ffd87e3ee1b4d schema:name readcube_id
46 schema:value 411849100fe6fbeeb27b997d52192a8e8da385218fb6ebdbaac8343d858223b6
47 rdf:type schema:PropertyValue
48 Nec56d488b0904b6eb98aed66981bd6af schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Nf9833aecd3974264970433fff9ba78c3 schema:isbn 978-0-387-69938-7
51 schema:name Machine Learning for Multimedia Content Analysis
52 rdf:type schema:Book
53 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
54 schema:name Information and Computing Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
57 schema:name Artificial Intelligence and Image Processing
58 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...