Wireless Channel Parameters Maximizing TCP Throughput View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

François Baccelli , Rene L. Cruz , Antonio Nucci

ABSTRACT

We consider a single TCP session traversing a wireless channel, with a constant signal to interference and noise ratio (SINR) at the receiver. We consider the problem of determining the optimal transmission energy per bit, to maximize TCP throughput. Specifically, in the case where direct sequence spread spectrum modulation is used over a fixed bandwidth channel, we find the optimal processing gain m that maximizes TCP throughput. In the case where there is a high signal to noise ratio, we consider the scenario where adaptive modulation is used over a fixed bandwidth channel, and find the optimal symbol alphabet size M to maximize TCP throughput. Block codes applied to each packet for forward error correction can also be used, and in that case we consider the joint optimization of the coding rate to maximize TCP throughput. Finally, we discuss the issue of assigning target SINR values. In order to carry out our analysis, we obtain a TCP throughput formula in terms of the packet transmission error probability p and the transmission capacity C, which is of independent interest. In our TCP model, the window size is cut in half for each packet transmission loss, and also cut in half whenever the window size exceeds C. This formula is then used to characterize the optimal processing gain or the optimal symbol alphabet size as the solution of a simple fixed point equation that depends on the wireless channel parameters and the parameters of the TCP connection. More... »

PAGES

19-51

Book

TITLE

Wireless Communications

ISBN

978-0-387-37269-3
978-0-387-48945-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-48945-2_2

DOI

http://dx.doi.org/10.1007/978-0-387-48945-2_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029648345


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INRIA-ENS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baccelli", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.013374336621.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "UCSD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cruz", 
        "givenName": "Rene L.", 
        "id": "sg:person.01132135364.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132135364.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sprint ATL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nucci", 
        "givenName": "Antonio", 
        "id": "sg:person.011616757533.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011616757533.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0166-5316(02)00136-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037673544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-5316(02)00136-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037673544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4234.625033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/90.650137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511841224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098732039"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "We consider a single TCP session traversing a wireless channel, with a constant signal to interference and noise ratio (SINR) at the receiver. We consider the problem of determining the optimal transmission energy per bit, to maximize TCP throughput. Specifically, in the case where direct sequence spread spectrum modulation is used over a fixed bandwidth channel, we find the optimal processing gain m that maximizes TCP throughput. In the case where there is a high signal to noise ratio, we consider the scenario where adaptive modulation is used over a fixed bandwidth channel, and find the optimal symbol alphabet size M to maximize TCP throughput. Block codes applied to each packet for forward error correction can also be used, and in that case we consider the joint optimization of the coding rate to maximize TCP throughput. Finally, we discuss the issue of assigning target SINR values. In order to carry out our analysis, we obtain a TCP throughput formula in terms of the packet transmission error probability p and the transmission capacity C, which is of independent interest. In our TCP model, the window size is cut in half for each packet transmission loss, and also cut in half whenever the window size exceeds C. This formula is then used to characterize the optimal processing gain or the optimal symbol alphabet size as the solution of a simple fixed point equation that depends on the wireless channel parameters and the parameters of the TCP connection.", 
    "editor": [
      {
        "familyName": "Agrawal", 
        "givenName": "Prathima", 
        "type": "Person"
      }, 
      {
        "familyName": "Fleming", 
        "givenName": "Philip J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Lisa", 
        "type": "Person"
      }, 
      {
        "familyName": "Andrews", 
        "givenName": "Daniel Matthew", 
        "type": "Person"
      }, 
      {
        "familyName": "Yin", 
        "givenName": "George", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-48945-2_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-0-387-37269-3", 
        "978-0-387-48945-2"
      ], 
      "name": "Wireless Communications", 
      "type": "Book"
    }, 
    "name": "Wireless Channel Parameters Maximizing TCP Throughput", 
    "pagination": "19-51", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029648345"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-48945-2_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d3d113ac9878643e963618c21fd47e7e112f93c8bfe2459d97fe29bd704ae43"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-48945-2_2", 
      "https://app.dimensions.ai/details/publication/pub.1029648345"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99319_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-0-387-48945-2_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-48945-2_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-48945-2_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-48945-2_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-48945-2_2'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-48945-2_2 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Nfa6c3f2978cd478388db58bdcac2ec20
4 schema:citation https://doi.org/10.1016/s0166-5316(02)00136-0
5 https://doi.org/10.1017/cbo9780511841224
6 https://doi.org/10.1109/4234.625033
7 https://doi.org/10.1109/90.650137
8 schema:datePublished 2007
9 schema:datePublishedReg 2007-01-01
10 schema:description We consider a single TCP session traversing a wireless channel, with a constant signal to interference and noise ratio (SINR) at the receiver. We consider the problem of determining the optimal transmission energy per bit, to maximize TCP throughput. Specifically, in the case where direct sequence spread spectrum modulation is used over a fixed bandwidth channel, we find the optimal processing gain m that maximizes TCP throughput. In the case where there is a high signal to noise ratio, we consider the scenario where adaptive modulation is used over a fixed bandwidth channel, and find the optimal symbol alphabet size M to maximize TCP throughput. Block codes applied to each packet for forward error correction can also be used, and in that case we consider the joint optimization of the coding rate to maximize TCP throughput. Finally, we discuss the issue of assigning target SINR values. In order to carry out our analysis, we obtain a TCP throughput formula in terms of the packet transmission error probability p and the transmission capacity C, which is of independent interest. In our TCP model, the window size is cut in half for each packet transmission loss, and also cut in half whenever the window size exceeds C. This formula is then used to characterize the optimal processing gain or the optimal symbol alphabet size as the solution of a simple fixed point equation that depends on the wireless channel parameters and the parameters of the TCP connection.
11 schema:editor N00b0d50e81db4e38bb2f25b25f6a0b6a
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N7cf4028b23ab4cad813eeaf368ee0d80
16 schema:name Wireless Channel Parameters Maximizing TCP Throughput
17 schema:pagination 19-51
18 schema:productId N0da86828b8694c5c987f77826c99caee
19 N720cb49198d54b4683005c30bd5e985c
20 N82f5b21a6d394c308b9b1422683cc4cd
21 schema:publisher N403c20db4533440bac5fd6df44d87570
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029648345
23 https://doi.org/10.1007/978-0-387-48945-2_2
24 schema:sdDatePublished 2019-04-16T07:37
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Na272de771e9e4ee2afe07193d7d84cb4
27 schema:url https://link.springer.com/10.1007%2F978-0-387-48945-2_2
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N00b0d50e81db4e38bb2f25b25f6a0b6a rdf:first Nd07cf5b65ec74338b6fdd3c49696fca1
32 rdf:rest Nf975bd1df9164f56a9c1802bf9b2a7be
33 N0166c945acac4c5697e1d16f0820dbd0 rdf:first sg:person.01132135364.35
34 rdf:rest Nd402214aa69b46bdb2a11b2cdd63600f
35 N0da86828b8694c5c987f77826c99caee schema:name dimensions_id
36 schema:value pub.1029648345
37 rdf:type schema:PropertyValue
38 N1461cf0e86b64cd5960ec54697e72c43 schema:name Sprint ATL, USA
39 rdf:type schema:Organization
40 N1f1dc77c850c43278aa5dfff219192af schema:familyName Fleming
41 schema:givenName Philip J.
42 rdf:type schema:Person
43 N403c20db4533440bac5fd6df44d87570 schema:location New York, NY
44 schema:name Springer New York
45 rdf:type schema:Organisation
46 N6dd8a785741e4fd6b474d5d41a5e87f3 schema:familyName Zhang
47 schema:givenName Lisa
48 rdf:type schema:Person
49 N720cb49198d54b4683005c30bd5e985c schema:name doi
50 schema:value 10.1007/978-0-387-48945-2_2
51 rdf:type schema:PropertyValue
52 N76c0ff9c97b8448caf761c8ea525f8b3 rdf:first N784640f74d6242999ef0371cc2507ca6
53 rdf:rest rdf:nil
54 N784640f74d6242999ef0371cc2507ca6 schema:familyName Yin
55 schema:givenName George
56 rdf:type schema:Person
57 N7cf4028b23ab4cad813eeaf368ee0d80 schema:isbn 978-0-387-37269-3
58 978-0-387-48945-2
59 schema:name Wireless Communications
60 rdf:type schema:Book
61 N82f5b21a6d394c308b9b1422683cc4cd schema:name readcube_id
62 schema:value 8d3d113ac9878643e963618c21fd47e7e112f93c8bfe2459d97fe29bd704ae43
63 rdf:type schema:PropertyValue
64 N9e8f6054883340afbd7351ba29462eb0 rdf:first Nd9060d7f834d4cb48814a9674e844455
65 rdf:rest N76c0ff9c97b8448caf761c8ea525f8b3
66 Na272de771e9e4ee2afe07193d7d84cb4 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nd07cf5b65ec74338b6fdd3c49696fca1 schema:familyName Agrawal
69 schema:givenName Prathima
70 rdf:type schema:Person
71 Nd21af0c851674b99b7202e95004be954 rdf:first N6dd8a785741e4fd6b474d5d41a5e87f3
72 rdf:rest N9e8f6054883340afbd7351ba29462eb0
73 Nd402214aa69b46bdb2a11b2cdd63600f rdf:first sg:person.011616757533.51
74 rdf:rest rdf:nil
75 Nd9060d7f834d4cb48814a9674e844455 schema:familyName Andrews
76 schema:givenName Daniel Matthew
77 rdf:type schema:Person
78 Nf975bd1df9164f56a9c1802bf9b2a7be rdf:first N1f1dc77c850c43278aa5dfff219192af
79 rdf:rest Nd21af0c851674b99b7202e95004be954
80 Nf9b6ae1404c44835b31fc4263816fcbd schema:name INRIA-ENS, USA
81 rdf:type schema:Organization
82 Nfa6c3f2978cd478388db58bdcac2ec20 rdf:first sg:person.013374336621.69
83 rdf:rest N0166c945acac4c5697e1d16f0820dbd0
84 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
85 schema:name Technology
86 rdf:type schema:DefinedTerm
87 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
88 schema:name Communications Technologies
89 rdf:type schema:DefinedTerm
90 sg:person.01132135364.35 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
91 schema:familyName Cruz
92 schema:givenName Rene L.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132135364.35
94 rdf:type schema:Person
95 sg:person.011616757533.51 schema:affiliation N1461cf0e86b64cd5960ec54697e72c43
96 schema:familyName Nucci
97 schema:givenName Antonio
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011616757533.51
99 rdf:type schema:Person
100 sg:person.013374336621.69 schema:affiliation Nf9b6ae1404c44835b31fc4263816fcbd
101 schema:familyName Baccelli
102 schema:givenName François
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374336621.69
104 rdf:type schema:Person
105 https://doi.org/10.1016/s0166-5316(02)00136-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037673544
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/cbo9780511841224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098732039
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/4234.625033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171410
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/90.650137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247349
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
114 schema:name UCSD, USA
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...