Principles of Gene Microarray Data Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Simone Mocellin , Carlo Riccardo Rossi

ABSTRACT

The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology. More... »

PAGES

19-30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-39978-2_3

DOI

http://dx.doi.org/10.1007/978-0-387-39978-2_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048502754

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17265713


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Padua", 
          "id": "https://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Clinica Chirurgica II, Dipartimento di Scienze Oncologiche e Chirurgiche, University of Padova, Via Giustiniani 2, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mocellin", 
        "givenName": "Simone", 
        "id": "sg:person.01370531503.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370531503.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Padua", 
          "id": "https://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Clinica Chirurgica II, Dipartimento di Scienze Oncologiche e Chirurgiche, University of Padova, Via Giustiniani 2, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rossi", 
        "givenName": "Carlo Riccardo", 
        "id": "sg:person.013321165112.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013321165112.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.94.6.2150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000063412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(00)01772-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001776486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/89044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002292014", 
          "https://doi.org/10.1038/89044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/89044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002292014", 
          "https://doi.org/10.1038/89044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003890605", 
          "https://doi.org/10.1038/35001102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003890605", 
          "https://doi.org/10.1038/35001102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458398", 
          "https://doi.org/10.1038/nbt1296-1675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.11.2599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007003001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35000501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010898206", 
          "https://doi.org/10.1038/35000501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35000501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010898206", 
          "https://doi.org/10.1038/35000501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7799(01)01792-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013560057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1759(01)00307-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018069717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837407", 
          "https://doi.org/10.1038/ng1031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021837407", 
          "https://doi.org/10.1038/ng1031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(02)00070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028270856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(02)00070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028270856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.22.12691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031949494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(01)02973-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034406656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036315093", 
          "https://doi.org/10.1038/75671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036315093", 
          "https://doi.org/10.1038/75671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/8.10.1821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047227467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.1.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048892448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.18.9834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051886548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076984875", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000150157.83537.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076984875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000150157.83537.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076984875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000150157.83537.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076984875"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.", 
    "editor": [
      {
        "familyName": "Mocellin", 
        "givenName": "Simone", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-39978-2_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-39977-5"
      ], 
      "name": "Microarray Technology and Cancer Gene Profiling", 
      "type": "Book"
    }, 
    "name": "Principles of Gene Microarray Data Analysis", 
    "pagination": "19-30", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-39978-2_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e70f0befff2ca5b34ea60788ab1876c2e0ff3feb29f65e61b7485637929c04cb"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048502754"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17265713"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-39978-2_3", 
      "https://app.dimensions.ai/details/publication/pub.1048502754"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64091_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-0-387-39978-2_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-39978-2_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-39978-2_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-39978-2_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-39978-2_3'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      23 PREDICATES      64 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-39978-2_3 schema:about N1554a944bde44bc49f7e0ce151345a2e
2 N2333e2cd3d90427388bee76e624bc7c7
3 N26d070a1bae840fb9e3d4f3cdc833c75
4 N414a13f0f1194361a8d94cddc7ec991b
5 N4784d58f77d2444abfa378faeea5a7df
6 N49f47b241a794cfe89061c4e1600f2c5
7 N7b9f299014624ab384198383555f41f8
8 Na2329b76a4b24a43a0cb0b8468b4e67e
9 Na6bb18a73b1c4dd389fe8a09be41bab5
10 Nc23c10809fa844378d8b242697853dea
11 Nd29cbd499f4e418791b8b36eacaf30a0
12 Nee6f85f926c44d148155bc6f74062c1f
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author Nc30b4bd87818415ea7590e2522332183
16 schema:citation sg:pub.10.1038/35000501
17 sg:pub.10.1038/35001102
18 sg:pub.10.1038/4462
19 sg:pub.10.1038/75671
20 sg:pub.10.1038/89044
21 sg:pub.10.1038/nbt1296-1675
22 sg:pub.10.1038/ng1031
23 https://app.dimensions.ai/details/publication/pub.1076984875
24 https://doi.org/10.1016/s0014-5793(00)01772-5
25 https://doi.org/10.1016/s0014-5793(01)02973-8
26 https://doi.org/10.1016/s0022-1759(01)00307-6
27 https://doi.org/10.1016/s0167-7799(01)01792-9
28 https://doi.org/10.1016/s0893-6080(02)00070-9
29 https://doi.org/10.1073/pnas.94.6.2150
30 https://doi.org/10.1073/pnas.95.25.14863
31 https://doi.org/10.1073/pnas.96.22.12691
32 https://doi.org/10.1073/pnas.97.1.262
33 https://doi.org/10.1073/pnas.97.18.9834
34 https://doi.org/10.1093/hmg/8.10.1821
35 https://doi.org/10.1093/nar/30.11.2599
36 https://doi.org/10.1097/01.sla.0000150157.83537.53
37 https://doi.org/10.1126/science.270.5235.467
38 https://doi.org/10.1126/science.270.5235.484
39 https://doi.org/10.1126/science.286.5439.531
40 schema:datePublished 2007
41 schema:datePublishedReg 2007-01-01
42 schema:description The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.
43 schema:editor N9693afecac1e47c3a6fc1370deb75ab0
44 schema:genre chapter
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N54d0897f5d244c4fbc157b57679b7502
48 schema:name Principles of Gene Microarray Data Analysis
49 schema:pagination 19-30
50 schema:productId N33d3dba1ce6e4982af41762bd5233017
51 N67ec887a9a3a49e9b5c8515a8cf72113
52 N8f9e906029974bcd90c5741cb4af370c
53 Ne0b125f78f36496eacbf65011bf8e676
54 schema:publisher N057d2aebf5204331b048abb17de72acb
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048502754
56 https://doi.org/10.1007/978-0-387-39978-2_3
57 schema:sdDatePublished 2019-04-16T05:24
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nbecd1f57ae744bf78886015654587761
60 schema:url https://link.springer.com/10.1007%2F978-0-387-39978-2_3
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N057d2aebf5204331b048abb17de72acb schema:location New York, NY
65 schema:name Springer New York
66 rdf:type schema:Organisation
67 N1554a944bde44bc49f7e0ce151345a2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Nucleic Acid Hybridization
69 rdf:type schema:DefinedTerm
70 N21ba5942e5424e0ca402ff57ffd1c11b rdf:first sg:person.013321165112.41
71 rdf:rest rdf:nil
72 N2333e2cd3d90427388bee76e624bc7c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Humans
74 rdf:type schema:DefinedTerm
75 N26d070a1bae840fb9e3d4f3cdc833c75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Gene Expression Profiling
77 rdf:type schema:DefinedTerm
78 N33d3dba1ce6e4982af41762bd5233017 schema:name doi
79 schema:value 10.1007/978-0-387-39978-2_3
80 rdf:type schema:PropertyValue
81 N414a13f0f1194361a8d94cddc7ec991b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Cell Line, Tumor
83 rdf:type schema:DefinedTerm
84 N4784d58f77d2444abfa378faeea5a7df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Algorithms
86 rdf:type schema:DefinedTerm
87 N49f47b241a794cfe89061c4e1600f2c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Oligonucleotide Array Sequence Analysis
89 rdf:type schema:DefinedTerm
90 N54d0897f5d244c4fbc157b57679b7502 schema:isbn 978-0-387-39977-5
91 schema:name Microarray Technology and Cancer Gene Profiling
92 rdf:type schema:Book
93 N67ec887a9a3a49e9b5c8515a8cf72113 schema:name pubmed_id
94 schema:value 17265713
95 rdf:type schema:PropertyValue
96 N7b9f299014624ab384198383555f41f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Cluster Analysis
98 rdf:type schema:DefinedTerm
99 N7f698fe762af4f1f9caa091397983ef6 schema:familyName Mocellin
100 schema:givenName Simone
101 rdf:type schema:Person
102 N8f9e906029974bcd90c5741cb4af370c schema:name readcube_id
103 schema:value e70f0befff2ca5b34ea60788ab1876c2e0ff3feb29f65e61b7485637929c04cb
104 rdf:type schema:PropertyValue
105 N9693afecac1e47c3a6fc1370deb75ab0 rdf:first N7f698fe762af4f1f9caa091397983ef6
106 rdf:rest rdf:nil
107 Na2329b76a4b24a43a0cb0b8468b4e67e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Data Interpretation, Statistical
109 rdf:type schema:DefinedTerm
110 Na6bb18a73b1c4dd389fe8a09be41bab5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Pattern Recognition, Automated
112 rdf:type schema:DefinedTerm
113 Nbecd1f57ae744bf78886015654587761 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nc23c10809fa844378d8b242697853dea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name DNA
117 rdf:type schema:DefinedTerm
118 Nc30b4bd87818415ea7590e2522332183 rdf:first sg:person.01370531503.96
119 rdf:rest N21ba5942e5424e0ca402ff57ffd1c11b
120 Nd29cbd499f4e418791b8b36eacaf30a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Animals
122 rdf:type schema:DefinedTerm
123 Ne0b125f78f36496eacbf65011bf8e676 schema:name dimensions_id
124 schema:value pub.1048502754
125 rdf:type schema:PropertyValue
126 Nee6f85f926c44d148155bc6f74062c1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Mice
128 rdf:type schema:DefinedTerm
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
133 schema:name Genetics
134 rdf:type schema:DefinedTerm
135 sg:person.013321165112.41 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
136 schema:familyName Rossi
137 schema:givenName Carlo Riccardo
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013321165112.41
139 rdf:type schema:Person
140 sg:person.01370531503.96 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
141 schema:familyName Mocellin
142 schema:givenName Simone
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370531503.96
144 rdf:type schema:Person
145 sg:pub.10.1038/35000501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010898206
146 https://doi.org/10.1038/35000501
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/35001102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003890605
149 https://doi.org/10.1038/35001102
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
152 https://doi.org/10.1038/4462
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/75671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036315093
155 https://doi.org/10.1038/75671
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/89044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002292014
158 https://doi.org/10.1038/89044
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
161 https://doi.org/10.1038/nbt1296-1675
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ng1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021837407
164 https://doi.org/10.1038/ng1031
165 rdf:type schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1076984875 schema:CreativeWork
167 https://doi.org/10.1016/s0014-5793(00)01772-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001776486
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0014-5793(01)02973-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034406656
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0022-1759(01)00307-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018069717
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0167-7799(01)01792-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013560057
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0893-6080(02)00070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028270856
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1073/pnas.94.6.2150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000063412
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1073/pnas.96.22.12691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031949494
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1073/pnas.97.1.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048892448
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.97.18.9834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051886548
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/hmg/8.10.1821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047227467
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/nar/30.11.2599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007003001
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/01.sla.0000150157.83537.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076984875
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.270.5235.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551479
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.5608.b schema:alternateName University of Padua
200 schema:name Clinica Chirurgica II, Dipartimento di Scienze Oncologiche e Chirurgiche, University of Padova, Via Giustiniani 2, Padova, Italy
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...