Classical and quantum computing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Gregg Jaeger

ABSTRACT

The fundamental limitations of any form of computation can be expressed in terms of the resource requirements of standard computational tasks under it. Within traditional models of computation, such as the Turing machine model, many problems are found to be intractable due to the limited computational capabilities of classical physical systems. However, quantum systems allow the range of tractable computations to be extended beyond that achievable by classical computation because the superposition principle offers a radically different sort of computational parallelism. The quantum circuit model (or gate array model), in which networks composed of quantum logic gates act on sets of qubits, is the dominant model of quantum computation and has an equivalent (quantum) Turing machine model. Both of these models and the general principles of quantum computation are discussed in this chapter. A number of specific algorithms, which illustrate the novel character of quantum computation, are described in the following chapter. More... »

PAGES

203-217

Book

TITLE

Quantum Information

ISBN

978-0-387-35725-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-36944-0_13

DOI

http://dx.doi.org/10.1007/978-0-387-36944-0_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049272412


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Jaeger", 
        "givenName": "Gregg", 
        "type": "Person"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "The fundamental limitations of any form of computation can be expressed in terms of the resource requirements of standard computational tasks under it. Within traditional models of computation, such as the Turing machine model, many problems are found to be intractable due to the limited computational capabilities of classical physical systems. However, quantum systems allow the range of tractable computations to be extended beyond that achievable by classical computation because the superposition principle offers a radically different sort of computational parallelism. The quantum circuit model (or gate array model), in which networks composed of quantum logic gates act on sets of qubits, is the dominant model of quantum computation and has an equivalent (quantum) Turing machine model. Both of these models and the general principles of quantum computation are discussed in this chapter. A number of specific algorithms, which illustrate the novel character of quantum computation, are described in the following chapter.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-36944-0_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-35725-6"
      ], 
      "name": "Quantum Information", 
      "type": "Book"
    }, 
    "name": "Classical and quantum computing", 
    "pagination": "203-217", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-36944-0_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eab97cddc479a97d233dafba5d6ac9ad7295cb1a214438a4b2b0dfc7b58329d4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049272412"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-36944-0_13", 
      "https://app.dimensions.ai/details/publication/pub.1049272412"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000084.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-0-387-36944-0_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-36944-0_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-36944-0_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-36944-0_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-36944-0_13'


 

This table displays all metadata directly associated to this object as RDF triples.

53 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-36944-0_13 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N6b9293fbaa4b45bc94c67b83b06cd7ca
4 schema:datePublished 2007
5 schema:datePublishedReg 2007-01-01
6 schema:description The fundamental limitations of any form of computation can be expressed in terms of the resource requirements of standard computational tasks under it. Within traditional models of computation, such as the Turing machine model, many problems are found to be intractable due to the limited computational capabilities of classical physical systems. However, quantum systems allow the range of tractable computations to be extended beyond that achievable by classical computation because the superposition principle offers a radically different sort of computational parallelism. The quantum circuit model (or gate array model), in which networks composed of quantum logic gates act on sets of qubits, is the dominant model of quantum computation and has an equivalent (quantum) Turing machine model. Both of these models and the general principles of quantum computation are discussed in this chapter. A number of specific algorithms, which illustrate the novel character of quantum computation, are described in the following chapter.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nbede6758c68b40f9beb67b85e535ae50
11 schema:name Classical and quantum computing
12 schema:pagination 203-217
13 schema:productId N09826b299d1045e59530c2c298488a52
14 N1c36894651bc4adfa341055cc51a7b27
15 N27756462257b45b2b3bf83ef2a1423d3
16 schema:publisher N13db5d6ab7f74e43a1a580defec38a6d
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049272412
18 https://doi.org/10.1007/978-0-387-36944-0_13
19 schema:sdDatePublished 2019-04-15T22:45
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N63a6a60e4f5f4683be5be56651f87689
22 schema:url http://link.springer.com/10.1007/978-0-387-36944-0_13
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N09826b299d1045e59530c2c298488a52 schema:name doi
27 schema:value 10.1007/978-0-387-36944-0_13
28 rdf:type schema:PropertyValue
29 N13db5d6ab7f74e43a1a580defec38a6d schema:location New York, NY
30 schema:name Springer New York
31 rdf:type schema:Organisation
32 N1c36894651bc4adfa341055cc51a7b27 schema:name dimensions_id
33 schema:value pub.1049272412
34 rdf:type schema:PropertyValue
35 N27756462257b45b2b3bf83ef2a1423d3 schema:name readcube_id
36 schema:value eab97cddc479a97d233dafba5d6ac9ad7295cb1a214438a4b2b0dfc7b58329d4
37 rdf:type schema:PropertyValue
38 N31de8546107d4794ba7d0045ae45e831 schema:familyName Jaeger
39 schema:givenName Gregg
40 rdf:type schema:Person
41 N63a6a60e4f5f4683be5be56651f87689 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N6b9293fbaa4b45bc94c67b83b06cd7ca rdf:first N31de8546107d4794ba7d0045ae45e831
44 rdf:rest rdf:nil
45 Nbede6758c68b40f9beb67b85e535ae50 schema:isbn 978-0-387-35725-6
46 schema:name Quantum Information
47 rdf:type schema:Book
48 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
49 schema:name Information and Computing Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
52 schema:name Computation Theory and Mathematics
53 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...