Monte-Carlo Go Developments View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2004

AUTHORS

B. Bouzy , B. Helmstetter

ABSTRACT

We describe two Go programs, Olga and Oleg, developed by a Monte-Carlo approach that is simpler than Bruegmann’s (1993) approach. Our method is based on Abramson (1990). We performed experiments, to assess ideas on (1) progressive pruning, (2) all moves as first heuristic, (3) temperature, (4) simulated annealing, and (5) depth-two tree search within the Monte-Carlo framework. Progressive pruning and the all moves as first heuristic are good speed-up enhancements that do not deteriorate the level of the program too much. Then, using a constant temperature is an adequate and simple heuristic that is about as good as simulated annealing. The depth-two heuristic gives deceptive results at the moment. The results of our Monte-Carlo programs against knowledge-based programs on 9x9 boards are promising. Finally, the ever-increasing power of computers lead us to think that Monte-Carlo approaches are worth considering for computer Go in the future. More... »

PAGES

159-174

Book

TITLE

Advances in Computer Games

ISBN

978-1-4757-4424-8
978-0-387-35706-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-35706-5_11

DOI

http://dx.doi.org/10.1007/978-0-387-35706-5_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044078476


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris Descartes University", 
          "id": "https://www.grid.ac/institutes/grid.10992.33", 
          "name": [
            "UFR de mathematiques et d\u2019informatique, C.R.I.P.5, Universit\u00e9 Paris 5, 45, rue des Saints-P\u00e8res, 75270\u00a0Paris Cedex 06, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouzy", 
        "givenName": "B.", 
        "id": "sg:person.016056171471.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056171471.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "laboratoire d\u2019Intelligence Artificielle, Universit\u00e9 Paris 8, 2, rue de la Libert\u00e9, 93526\u00a0Saint-Denis Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helmstetter", 
        "givenName": "B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0004-3702(87)90004-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005847332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(87)90004-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005847332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(01)00127-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008806942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(01)00166-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010924070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(01)00110-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033664939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0255(99)00083-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041765369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(01)00130-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044471374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.44404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156299"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "We describe two Go programs, Olga and Oleg, developed by a Monte-Carlo approach that is simpler than Bruegmann\u2019s (1993) approach. Our method is based on Abramson (1990). We performed experiments, to assess ideas on (1) progressive pruning, (2) all moves as first heuristic, (3) temperature, (4) simulated annealing, and (5) depth-two tree search within the Monte-Carlo framework. Progressive pruning and the all moves as first heuristic are good speed-up enhancements that do not deteriorate the level of the program too much. Then, using a constant temperature is an adequate and simple heuristic that is about as good as simulated annealing. The depth-two heuristic gives deceptive results at the moment. The results of our Monte-Carlo programs against knowledge-based programs on 9x9 boards are promising. Finally, the ever-increasing power of computers lead us to think that Monte-Carlo approaches are worth considering for computer Go in the future.", 
    "editor": [
      {
        "familyName": "Herik", 
        "givenName": "H. Jaap", 
        "type": "Person"
      }, 
      {
        "familyName": "Iida", 
        "givenName": "Hiroyuki", 
        "type": "Person"
      }, 
      {
        "familyName": "Heinz", 
        "givenName": "Ernst A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-35706-5_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-4424-8", 
        "978-0-387-35706-5"
      ], 
      "name": "Advances in Computer Games", 
      "type": "Book"
    }, 
    "name": "Monte-Carlo Go Developments", 
    "pagination": "159-174", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-35706-5_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d1f5e37b972357f663a37a90aa50c9680837a3151d553fabaed3ed81ecccdbd3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044078476"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-35706-5_11", 
      "https://app.dimensions.ai/details/publication/pub.1044078476"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000270.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-0-387-35706-5_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-35706-5_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-35706-5_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-35706-5_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-35706-5_11'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-35706-5_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf378c58d8e7943a0b1dc8094046ab902
4 schema:citation https://doi.org/10.1016/0004-3702(87)90004-x
5 https://doi.org/10.1016/s0004-3702(01)00110-2
6 https://doi.org/10.1016/s0004-3702(01)00127-8
7 https://doi.org/10.1016/s0004-3702(01)00130-8
8 https://doi.org/10.1016/s0004-3702(01)00166-7
9 https://doi.org/10.1016/s0020-0255(99)00083-3
10 https://doi.org/10.1109/34.44404
11 schema:datePublished 2004
12 schema:datePublishedReg 2004-01-01
13 schema:description We describe two Go programs, Olga and Oleg, developed by a Monte-Carlo approach that is simpler than Bruegmann’s (1993) approach. Our method is based on Abramson (1990). We performed experiments, to assess ideas on (1) progressive pruning, (2) all moves as first heuristic, (3) temperature, (4) simulated annealing, and (5) depth-two tree search within the Monte-Carlo framework. Progressive pruning and the all moves as first heuristic are good speed-up enhancements that do not deteriorate the level of the program too much. Then, using a constant temperature is an adequate and simple heuristic that is about as good as simulated annealing. The depth-two heuristic gives deceptive results at the moment. The results of our Monte-Carlo programs against knowledge-based programs on 9x9 boards are promising. Finally, the ever-increasing power of computers lead us to think that Monte-Carlo approaches are worth considering for computer Go in the future.
14 schema:editor Nbfff2277e8044f9e9dbc0cd0ec7a1d61
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N83041e70a28947ef96b359484b33f4d3
19 schema:name Monte-Carlo Go Developments
20 schema:pagination 159-174
21 schema:productId N17272599fd1e4e85a1cdf5099d61d0e8
22 N81965bc58bb242d59dc0c7c2e35a8547
23 Nec91d1c360bb485ea0ee6e762a64e4f4
24 schema:publisher N9dd86dc65ac1472f8553db2be2683437
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044078476
26 https://doi.org/10.1007/978-0-387-35706-5_11
27 schema:sdDatePublished 2019-04-15T20:08
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Ncede2125e6614908bc8dd00bc6e0e817
30 schema:url http://link.springer.com/10.1007/978-0-387-35706-5_11
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N17272599fd1e4e85a1cdf5099d61d0e8 schema:name readcube_id
35 schema:value d1f5e37b972357f663a37a90aa50c9680837a3151d553fabaed3ed81ecccdbd3
36 rdf:type schema:PropertyValue
37 N526743814173489097e3cf40e5e13b48 rdf:first Na5fe533b031d4a0bb79b0cbe1232af9d
38 rdf:rest rdf:nil
39 N7944b711ff354d8e92aa0ca623d651fd schema:affiliation Nd487498b605a4850af6bae7bdc4a351c
40 schema:familyName Helmstetter
41 schema:givenName B.
42 rdf:type schema:Person
43 N7f39b28c85e948f5b9b37f32c934c15d schema:familyName Iida
44 schema:givenName Hiroyuki
45 rdf:type schema:Person
46 N81965bc58bb242d59dc0c7c2e35a8547 schema:name doi
47 schema:value 10.1007/978-0-387-35706-5_11
48 rdf:type schema:PropertyValue
49 N83041e70a28947ef96b359484b33f4d3 schema:isbn 978-0-387-35706-5
50 978-1-4757-4424-8
51 schema:name Advances in Computer Games
52 rdf:type schema:Book
53 N89e95aaae0354ed59eb3893013192ab3 rdf:first N7944b711ff354d8e92aa0ca623d651fd
54 rdf:rest rdf:nil
55 N9dd86dc65ac1472f8553db2be2683437 schema:location Boston, MA
56 schema:name Springer US
57 rdf:type schema:Organisation
58 Na5fe533b031d4a0bb79b0cbe1232af9d schema:familyName Heinz
59 schema:givenName Ernst A.
60 rdf:type schema:Person
61 Nbfff2277e8044f9e9dbc0cd0ec7a1d61 rdf:first Ne25b93b2f3d14277823034873d58d2d7
62 rdf:rest Nf9c30f7978ed48bfbd2b2b22c73c4a0a
63 Ncede2125e6614908bc8dd00bc6e0e817 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nd487498b605a4850af6bae7bdc4a351c schema:name laboratoire d’Intelligence Artificielle, Université Paris 8, 2, rue de la Liberté, 93526 Saint-Denis Cedex, France
66 rdf:type schema:Organization
67 Ne25b93b2f3d14277823034873d58d2d7 schema:familyName Herik
68 schema:givenName H. Jaap
69 rdf:type schema:Person
70 Nec91d1c360bb485ea0ee6e762a64e4f4 schema:name dimensions_id
71 schema:value pub.1044078476
72 rdf:type schema:PropertyValue
73 Nf378c58d8e7943a0b1dc8094046ab902 rdf:first sg:person.016056171471.39
74 rdf:rest N89e95aaae0354ed59eb3893013192ab3
75 Nf9c30f7978ed48bfbd2b2b22c73c4a0a rdf:first N7f39b28c85e948f5b9b37f32c934c15d
76 rdf:rest N526743814173489097e3cf40e5e13b48
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:person.016056171471.39 schema:affiliation https://www.grid.ac/institutes/grid.10992.33
84 schema:familyName Bouzy
85 schema:givenName B.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056171471.39
87 rdf:type schema:Person
88 https://doi.org/10.1016/0004-3702(87)90004-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005847332
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/s0004-3702(01)00110-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033664939
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/s0004-3702(01)00127-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008806942
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/s0004-3702(01)00130-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044471374
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0004-3702(01)00166-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010924070
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s0020-0255(99)00083-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041765369
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/34.44404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156299
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.10992.33 schema:alternateName Paris Descartes University
103 schema:name UFR de mathematiques et d’informatique, C.R.I.P.5, Université Paris 5, 45, rue des Saints-Pères, 75270 Paris Cedex 06, France
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...