A frequency domain approach to the boundary control problem for parabolic equations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1996

AUTHORS

L. Pandolfi

ABSTRACT

The quadratic regulator problem for boundary control systems was studied in many papers, compare Lasiescka and Triggiani (1991) and Bensoussan et al. (1993) for an overview of the existing results. In particular, precise results are available in the case of control systems whose free evolution generates a holomorphic semigroup, due to the high regularity. However, the analysis of the regulator problem was carried out completely in the time domain. Hence, we propose to rederive existing results for parabolic boundary control systems, and standard quadratic cost, following a route which is largely (but not completely) in the frequency domain. More... »

PAGES

149-158

References to SciGraph publications

Book

TITLE

Modelling and Optimization of Distributed Parameter Systems Applications to engineering

ISBN

978-1-4757-5864-1
978-0-387-34922-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-34922-0_14

DOI

http://dx.doi.org/10.1007/978-0-387-34922-0_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047633854


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.4800.c", 
          "name": [
            "Politecnico di Torino, Dipartimento di Matematica, Corso Duca degli Abruzzi, 24, 10129\u00a0Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pandolfi", 
        "givenName": "L.", 
        "id": "sg:person.012351424331.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351424331.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-247x(70)90283-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010506843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02191985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037971054", 
          "https://doi.org/10.1007/bf02191985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02191985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037971054", 
          "https://doi.org/10.1007/bf02191985"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "The quadratic regulator problem for boundary control systems was studied in many papers, compare Lasiescka and Triggiani (1991) and Bensoussan et al. (1993) for an overview of the existing results. In particular, precise results are available in the case of control systems whose free evolution generates a holomorphic semigroup, due to the high regularity. However, the analysis of the regulator problem was carried out completely in the time domain. Hence, we propose to rederive existing results for parabolic boundary control systems, and standard quadratic cost, following a route which is largely (but not completely) in the frequency domain.", 
    "editor": [
      {
        "familyName": "Malanowski", 
        "givenName": "Kazimierz", 
        "type": "Person"
      }, 
      {
        "familyName": "Nahorski", 
        "givenName": "Zbigniew", 
        "type": "Person"
      }, 
      {
        "familyName": "Peszy\u0144ska", 
        "givenName": "Ma\u0142gorzata", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-34922-0_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-5864-1", 
        "978-0-387-34922-0"
      ], 
      "name": "Modelling and Optimization of Distributed Parameter Systems Applications to engineering", 
      "type": "Book"
    }, 
    "name": "A frequency domain approach to the boundary control problem for parabolic equations", 
    "pagination": "149-158", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-34922-0_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2ea30ee65d1b6f7ff0063d49b17f2476496eedc6e36ed3fb084725113c4a2c9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047633854"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-34922-0_14", 
      "https://app.dimensions.ai/details/publication/pub.1047633854"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000272.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-0-387-34922-0_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-34922-0_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-34922-0_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-34922-0_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-34922-0_14'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-34922-0_14 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N227c67e42d6b46b0b9b79ff232a98a04
4 schema:citation sg:pub.10.1007/bf02191985
5 https://doi.org/10.1016/0022-247x(70)90283-0
6 schema:datePublished 1996
7 schema:datePublishedReg 1996-01-01
8 schema:description The quadratic regulator problem for boundary control systems was studied in many papers, compare Lasiescka and Triggiani (1991) and Bensoussan et al. (1993) for an overview of the existing results. In particular, precise results are available in the case of control systems whose free evolution generates a holomorphic semigroup, due to the high regularity. However, the analysis of the regulator problem was carried out completely in the time domain. Hence, we propose to rederive existing results for parabolic boundary control systems, and standard quadratic cost, following a route which is largely (but not completely) in the frequency domain.
9 schema:editor N76fe933dae2e4fe0b2db322ce144890f
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N9deb7df1955c49a6b4516136823f4561
14 schema:name A frequency domain approach to the boundary control problem for parabolic equations
15 schema:pagination 149-158
16 schema:productId N0889cf357e724cd9be093566f6795799
17 N3a63a2dea6674c5ab6d8440673727b53
18 N6a7ac3553d6342a696aaa573d1bf192f
19 schema:publisher N128e119c4ea64471a25a159112615d13
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047633854
21 https://doi.org/10.1007/978-0-387-34922-0_14
22 schema:sdDatePublished 2019-04-15T13:30
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nc5e8fb6fad044dde8f626a66393dc2bf
25 schema:url http://link.springer.com/10.1007/978-0-387-34922-0_14
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N0889cf357e724cd9be093566f6795799 schema:name doi
30 schema:value 10.1007/978-0-387-34922-0_14
31 rdf:type schema:PropertyValue
32 N0df1cbc91a45419da480d7a60fe195fa schema:familyName Nahorski
33 schema:givenName Zbigniew
34 rdf:type schema:Person
35 N128e119c4ea64471a25a159112615d13 schema:location Boston, MA
36 schema:name Springer US
37 rdf:type schema:Organisation
38 N227c67e42d6b46b0b9b79ff232a98a04 rdf:first sg:person.012351424331.97
39 rdf:rest rdf:nil
40 N3a63a2dea6674c5ab6d8440673727b53 schema:name readcube_id
41 schema:value e2ea30ee65d1b6f7ff0063d49b17f2476496eedc6e36ed3fb084725113c4a2c9
42 rdf:type schema:PropertyValue
43 N3baa8903328e4256b3f2ef75e31dfb1b schema:familyName Peszyńska
44 schema:givenName Małgorzata
45 rdf:type schema:Person
46 N51677a2ce0134101a2035d5b377e268d rdf:first N3baa8903328e4256b3f2ef75e31dfb1b
47 rdf:rest rdf:nil
48 N5d733d6db47044529a6a39f6df682d93 rdf:first N0df1cbc91a45419da480d7a60fe195fa
49 rdf:rest N51677a2ce0134101a2035d5b377e268d
50 N6a7ac3553d6342a696aaa573d1bf192f schema:name dimensions_id
51 schema:value pub.1047633854
52 rdf:type schema:PropertyValue
53 N76fe933dae2e4fe0b2db322ce144890f rdf:first Nb703477812534198904d4c7483d5a3d4
54 rdf:rest N5d733d6db47044529a6a39f6df682d93
55 N9deb7df1955c49a6b4516136823f4561 schema:isbn 978-0-387-34922-0
56 978-1-4757-5864-1
57 schema:name Modelling and Optimization of Distributed Parameter Systems Applications to engineering
58 rdf:type schema:Book
59 Nb703477812534198904d4c7483d5a3d4 schema:familyName Malanowski
60 schema:givenName Kazimierz
61 rdf:type schema:Person
62 Nc5e8fb6fad044dde8f626a66393dc2bf schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
68 schema:name Applied Mathematics
69 rdf:type schema:DefinedTerm
70 sg:person.012351424331.97 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
71 schema:familyName Pandolfi
72 schema:givenName L.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351424331.97
74 rdf:type schema:Person
75 sg:pub.10.1007/bf02191985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037971054
76 https://doi.org/10.1007/bf02191985
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0022-247x(70)90283-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010506843
79 rdf:type schema:CreativeWork
80 https://www.grid.ac/institutes/grid.4800.c schema:alternateName Polytechnic University of Turin
81 schema:name Politecnico di Torino, Dipartimento di Matematica, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...