Enhancement and Tuning of High-Order Harmonic Generation Using Adaptive Pulse Shaping View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

D. H. Reitze , S. Kazamias , F. Weihe , G. Mullot , D. Douillet , F. Augé , O. Albert , V. Ramanathan , J. P. Chambaret , D. Hulin , P. Balcou

ABSTRACT

The optimization of high-order harmonic generation (HHG) processes continues to be an active area of investigation, not only for improving specific aspects of HHG (such as phase-matching, extending the cutoff frequency, generating tunable harmonics, and generating ultrashort harmonics), but also for developing a better understanding of fundamental HHG processes. While many intuitive schemes exist for improving HHG (such as chirping the laser pulse to tune the harmonic spectrum [1–3]), adaptive pulse shaping has also proven effective. The use of genetic algorithms coupled with pulse shaping has become a popular method in coherent control experiments [4]. Using sub-20 fs pulses, specific orders near the cutoff can be enhanced through shaping of the input pulse spectral phase [5]. Recent theoretical work using genetic algorithms have investigated the optimal focus, gas density, and interaction length to optimize the output flux, the pulse duration, and temporal coherence [6]. More... »

PAGES

223-228

References to SciGraph publications

Book

TITLE

Ultrafast Optics IV

ISBN

978-1-4684-9584-3
978-0-387-34756-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-34756-1_28

DOI

http://dx.doi.org/10.1007/978-0-387-34756-1_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042939816


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Physics Department, University of Florida, Gainesville, FL\u00a032601, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reitze", 
        "givenName": "D. H.", 
        "id": "sg:person.0663161230.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663161230.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA \u2014 Ecole Polytechnique, CNRS-UMR 7639, 91761\u00a0Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazamias", 
        "givenName": "S.", 
        "id": "sg:person.0763475247.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763475247.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA \u2014 Ecole Polytechnique, CNRS-UMR 7639, 91761\u00a0Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weihe", 
        "givenName": "F.", 
        "id": "sg:person.0753057572.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753057572.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA \u2014 Ecole Polytechnique, CNRS-UMR 7639, 91761\u00a0Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mullot", 
        "givenName": "G.", 
        "id": "sg:person.01140252375.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140252375.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA \u2014 Ecole Polytechnique, CNRS-UMR 7639, 91761\u00a0Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Douillet", 
        "givenName": "D.", 
        "id": "sg:person.01246604402.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246604402.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA \u2014 Ecole Polytechnique, CNRS-UMR 7639, 91761\u00a0Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aug\u00e9", 
        "givenName": "F.", 
        "id": "sg:person.0673277552.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673277552.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA \u2014 Ecole Polytechnique, CNRS-UMR 7639, 91761\u00a0Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Albert", 
        "givenName": "O.", 
        "id": "sg:person.0653403557.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653403557.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Physics Department, University of Florida, Gainesville, FL\u00a032601, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramanathan", 
        "givenName": "V.", 
        "id": "sg:person.0637526312.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637526312.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA \u2014 Ecole Polytechnique, CNRS-UMR 7639, 91761\u00a0Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chambaret", 
        "givenName": "J. P.", 
        "id": "sg:person.0761147730.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761147730.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA \u2014 Ecole Polytechnique, CNRS-UMR 7639, 91761\u00a0Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hulin", 
        "givenName": "D.", 
        "id": "sg:person.01221545504.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221545504.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d\u2019Optique Appliqu\u00e9e, ENSTA \u2014 Ecole Polytechnique, CNRS-UMR 7639, 91761\u00a0Palaiseau Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balcou", 
        "givenName": "P.", 
        "id": "sg:person.015041340104.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015041340104.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-4075/34/24/307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001844071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35018029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047775860", 
          "https://doi.org/10.1038/35018029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35018029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047775860", 
          "https://doi.org/10.1038/35018029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2002-00193-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051948491", 
          "https://doi.org/10.1140/epjd/e2002-00193-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.4747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.4747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.r30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.r30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.021801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.61.021801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.243902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.243902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.25.000575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065219133"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "The optimization of high-order harmonic generation (HHG) processes continues to be an active area of investigation, not only for improving specific aspects of HHG (such as phase-matching, extending the cutoff frequency, generating tunable harmonics, and generating ultrashort harmonics), but also for developing a better understanding of fundamental HHG processes. While many intuitive schemes exist for improving HHG (such as chirping the laser pulse to tune the harmonic spectrum [1\u20133]), adaptive pulse shaping has also proven effective. The use of genetic algorithms coupled with pulse shaping has become a popular method in coherent control experiments [4]. Using sub-20 fs pulses, specific orders near the cutoff can be enhanced through shaping of the input pulse spectral phase [5]. Recent theoretical work using genetic algorithms have investigated the optimal focus, gas density, and interaction length to optimize the output flux, the pulse duration, and temporal coherence [6].", 
    "editor": [
      {
        "familyName": "Krausz", 
        "givenName": "Ferenc", 
        "type": "Person"
      }, 
      {
        "familyName": "Korn", 
        "givenName": "Georg", 
        "type": "Person"
      }, 
      {
        "familyName": "Corkum", 
        "givenName": "Paul", 
        "type": "Person"
      }, 
      {
        "familyName": "Walmsley", 
        "givenName": "Ian A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-34756-1_28", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4684-9584-3", 
        "978-0-387-34756-1"
      ], 
      "name": "Ultrafast Optics IV", 
      "type": "Book"
    }, 
    "name": "Enhancement and Tuning of High-Order Harmonic Generation Using Adaptive Pulse Shaping", 
    "pagination": "223-228", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-34756-1_28"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cc897a8a06f80989b6f6be7046e65e3989d11c9e03184eedce19e424d47188b1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042939816"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-34756-1_28", 
      "https://app.dimensions.ai/details/publication/pub.1042939816"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000269.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-0-387-34756-1_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-34756-1_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-34756-1_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-34756-1_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-34756-1_28'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-34756-1_28 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nc44c32d18cba43068b015f0c18681dca
4 schema:citation sg:pub.10.1038/35018029
5 sg:pub.10.1140/epjd/e2002-00193-0
6 https://doi.org/10.1088/0953-4075/34/24/307
7 https://doi.org/10.1103/physreva.52.4747
8 https://doi.org/10.1103/physreva.58.r30
9 https://doi.org/10.1103/physreva.61.021801
10 https://doi.org/10.1103/physrevlett.68.1500
11 https://doi.org/10.1103/physrevlett.81.5544
12 https://doi.org/10.1103/physrevlett.87.243902
13 https://doi.org/10.1364/ol.25.000575
14 schema:datePublished 2004
15 schema:datePublishedReg 2004-01-01
16 schema:description The optimization of high-order harmonic generation (HHG) processes continues to be an active area of investigation, not only for improving specific aspects of HHG (such as phase-matching, extending the cutoff frequency, generating tunable harmonics, and generating ultrashort harmonics), but also for developing a better understanding of fundamental HHG processes. While many intuitive schemes exist for improving HHG (such as chirping the laser pulse to tune the harmonic spectrum [1–3]), adaptive pulse shaping has also proven effective. The use of genetic algorithms coupled with pulse shaping has become a popular method in coherent control experiments [4]. Using sub-20 fs pulses, specific orders near the cutoff can be enhanced through shaping of the input pulse spectral phase [5]. Recent theoretical work using genetic algorithms have investigated the optimal focus, gas density, and interaction length to optimize the output flux, the pulse duration, and temporal coherence [6].
17 schema:editor Nb79c3d2547c345feaf653c77444f2848
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N43b166f4e55844e28612bba14d66566a
22 schema:name Enhancement and Tuning of High-Order Harmonic Generation Using Adaptive Pulse Shaping
23 schema:pagination 223-228
24 schema:productId N799cb11881c34696a7a5a1a60cf736f8
25 Nc77a50c50c994714aaec5cef4d2239a6
26 Nc7c042ae174f4ecd827f8e0429654126
27 schema:publisher N2e3967fef0554174aad3e857c3a0ec5b
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042939816
29 https://doi.org/10.1007/978-0-387-34756-1_28
30 schema:sdDatePublished 2019-04-15T16:19
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N8e3071e672c2401ebe59831afb8a20ea
33 schema:url http://link.springer.com/10.1007/978-0-387-34756-1_28
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N04464f8cfc1844179851b72323dd1a0a rdf:first sg:person.0637526312.11
38 rdf:rest N931a39c74acc468b813f49709a0b8cad
39 N07f22b7db13f416aa78a8bad34233ddc schema:familyName Korn
40 schema:givenName Georg
41 rdf:type schema:Person
42 N0cf5a211f8a148dbacee00d646a90947 schema:familyName Walmsley
43 schema:givenName Ian A.
44 rdf:type schema:Person
45 N0e974e4282b844bfb7a70067586dd884 rdf:first sg:person.01221545504.01
46 rdf:rest N86cf584ac8eb4c0cac79d73062e08cda
47 N156def3f825f4717ad90b6b2327cab85 rdf:first N0cf5a211f8a148dbacee00d646a90947
48 rdf:rest rdf:nil
49 N2e3967fef0554174aad3e857c3a0ec5b schema:location New York, NY
50 schema:name Springer New York
51 rdf:type schema:Organisation
52 N2f7f46c959fa4951965a4821e8c6d794 rdf:first sg:person.01140252375.99
53 rdf:rest N63057b306f7e440690d1aa3dbf135859
54 N30fe25dea2d14653983742ba82d8eacd rdf:first sg:person.0673277552.88
55 rdf:rest N74e67add64224309a8a3bd9992838194
56 N43b166f4e55844e28612bba14d66566a schema:isbn 978-0-387-34756-1
57 978-1-4684-9584-3
58 schema:name Ultrafast Optics IV
59 rdf:type schema:Book
60 N47af90b0b77e412480b0a90501c909a9 rdf:first sg:person.0753057572.74
61 rdf:rest N2f7f46c959fa4951965a4821e8c6d794
62 N6257d308441446e39de848d20d42416f schema:familyName Krausz
63 schema:givenName Ferenc
64 rdf:type schema:Person
65 N63057b306f7e440690d1aa3dbf135859 rdf:first sg:person.01246604402.16
66 rdf:rest N30fe25dea2d14653983742ba82d8eacd
67 N74e67add64224309a8a3bd9992838194 rdf:first sg:person.0653403557.62
68 rdf:rest N04464f8cfc1844179851b72323dd1a0a
69 N799cb11881c34696a7a5a1a60cf736f8 schema:name dimensions_id
70 schema:value pub.1042939816
71 rdf:type schema:PropertyValue
72 N86cf584ac8eb4c0cac79d73062e08cda rdf:first sg:person.015041340104.19
73 rdf:rest rdf:nil
74 N88bc6ea12d694d5eaffb9830948ed6e9 rdf:first sg:person.0763475247.40
75 rdf:rest N47af90b0b77e412480b0a90501c909a9
76 N8e3071e672c2401ebe59831afb8a20ea schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N931a39c74acc468b813f49709a0b8cad rdf:first sg:person.0761147730.75
79 rdf:rest N0e974e4282b844bfb7a70067586dd884
80 N9cb2674309fd414daeb7d5c43953a207 rdf:first Ndea5a7f7463a4891aecc34a756e01d5e
81 rdf:rest N156def3f825f4717ad90b6b2327cab85
82 Nb79c3d2547c345feaf653c77444f2848 rdf:first N6257d308441446e39de848d20d42416f
83 rdf:rest Nc64744113f6e4c40a72641da5db5dc56
84 Nc44c32d18cba43068b015f0c18681dca rdf:first sg:person.0663161230.01
85 rdf:rest N88bc6ea12d694d5eaffb9830948ed6e9
86 Nc64744113f6e4c40a72641da5db5dc56 rdf:first N07f22b7db13f416aa78a8bad34233ddc
87 rdf:rest N9cb2674309fd414daeb7d5c43953a207
88 Nc77a50c50c994714aaec5cef4d2239a6 schema:name readcube_id
89 schema:value cc897a8a06f80989b6f6be7046e65e3989d11c9e03184eedce19e424d47188b1
90 rdf:type schema:PropertyValue
91 Nc7c042ae174f4ecd827f8e0429654126 schema:name doi
92 schema:value 10.1007/978-0-387-34756-1_28
93 rdf:type schema:PropertyValue
94 Ndea5a7f7463a4891aecc34a756e01d5e schema:familyName Corkum
95 schema:givenName Paul
96 rdf:type schema:Person
97 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
98 schema:name Biological Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
101 schema:name Genetics
102 rdf:type schema:DefinedTerm
103 sg:person.01140252375.99 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
104 schema:familyName Mullot
105 schema:givenName G.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140252375.99
107 rdf:type schema:Person
108 sg:person.01221545504.01 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
109 schema:familyName Hulin
110 schema:givenName D.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221545504.01
112 rdf:type schema:Person
113 sg:person.01246604402.16 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
114 schema:familyName Douillet
115 schema:givenName D.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246604402.16
117 rdf:type schema:Person
118 sg:person.015041340104.19 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
119 schema:familyName Balcou
120 schema:givenName P.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015041340104.19
122 rdf:type schema:Person
123 sg:person.0637526312.11 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
124 schema:familyName Ramanathan
125 schema:givenName V.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637526312.11
127 rdf:type schema:Person
128 sg:person.0653403557.62 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
129 schema:familyName Albert
130 schema:givenName O.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653403557.62
132 rdf:type schema:Person
133 sg:person.0663161230.01 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
134 schema:familyName Reitze
135 schema:givenName D. H.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663161230.01
137 rdf:type schema:Person
138 sg:person.0673277552.88 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
139 schema:familyName Augé
140 schema:givenName F.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673277552.88
142 rdf:type schema:Person
143 sg:person.0753057572.74 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
144 schema:familyName Weihe
145 schema:givenName F.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753057572.74
147 rdf:type schema:Person
148 sg:person.0761147730.75 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
149 schema:familyName Chambaret
150 schema:givenName J. P.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761147730.75
152 rdf:type schema:Person
153 sg:person.0763475247.40 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
154 schema:familyName Kazamias
155 schema:givenName S.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763475247.40
157 rdf:type schema:Person
158 sg:pub.10.1038/35018029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047775860
159 https://doi.org/10.1038/35018029
160 rdf:type schema:CreativeWork
161 sg:pub.10.1140/epjd/e2002-00193-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051948491
162 https://doi.org/10.1140/epjd/e2002-00193-0
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/0953-4075/34/24/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001844071
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physreva.52.4747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490970
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physreva.58.r30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060494471
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physreva.61.021801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060495891
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.68.1500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804175
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.81.5544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818685
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.87.243902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824099
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1364/ol.25.000575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219133
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
181 schema:name Physics Department, University of Florida, Gainesville, FL 32601, USA
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.462947.a schema:alternateName Laboratoire d'Optique Appliquée
184 schema:name Laboratoire d’Optique Appliquée, ENSTA — Ecole Polytechnique, CNRS-UMR 7639, 91761 Palaiseau Cedex, France
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...