One-Step Hydrothermal Synthesis and Characterizations of Titanate Nanostructures View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Lian-Mao Peng , Qing Chen , G. H. Du , S. Zhang , W. Z. Zhou

ABSTRACT

Nanotubes are basically one-dimensional hollow materials [1]. In principle they can be formed by almost any compound, using a template Growth mechanism, such as the sol-gel method which involves the synthesis of the desired material within the pores of a nanoporous membrane or other solid. Examples of success synthesis include TiO2, V2O5, MnO2, Co3O4, ZnO, WO3, SiO2, Al2O3 and ZrO2 nanostructures [2–4]. Most of these synthesized nanotubes made from three-dimensional crystals are, however, of either amorphous or semi-crystalline nature. In forming a nanotube by a three-dimensional compound, such as TiO2, since the nanotube is a rolled-up structure of a two-dimensional sheet, it is impossible that all the chemical bonds of the threedimensional compound will be fully satisfied on the nanotube surfaces so that to form a perfectly ordered, flawless nanotubular structure. Therefore nanotubes made from three-dimensional compounds cannot form a fully crystalline structure and the nanotube surface is normally active. More... »

PAGES

157-171

References to SciGraph publications

Book

TITLE

Nanowires and Nanobelts

ISBN

978-0-387-28706-5
978-0-387-28747-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-28747-8_9

DOI

http://dx.doi.org/10.1007/978-0-387-28747-8_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006333579


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Department of Electronics, Peking University, 100871, Beijing, China", 
            "Beijing Laboratory of Electron Microscopy Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Lian-Mao", 
        "id": "sg:person.010515521607.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Department of Electronics, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Qing", 
        "id": "sg:person.01020455202.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020455202.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Beijing Laboratory of Electron Microscopy Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "G. H.", 
        "id": "sg:person.01221261570.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221261570.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Department of Electronics, Peking University, 100871, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "S.", 
        "id": "sg:person.011012403715.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011012403715.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of St Andrews", 
          "id": "https://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "School of Chemistry, University of St. Andrew, St. Andrews, KY16 9ST, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "W. Z.", 
        "id": "sg:person.0735056672.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735056672.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-4596(92)90184-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008830324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0365110x62000523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012129437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.1997.0089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012847783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108768102009084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013316947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/354056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016485857", 
          "https://doi.org/10.1038/354056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0365110x57002194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022150931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025421157", 
          "https://doi.org/10.1038/35104607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025421157", 
          "https://doi.org/10.1038/35104607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la9713816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032250441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la9713816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032250441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033094697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm970268y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035125797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm970268y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035125797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-4095(20020903)14:17<1208::aid-adma1208>3.0.co;2-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046176743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr00035a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053980654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00114a031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055707905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1423403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057705129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.447218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058025238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.882658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058128115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.3460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060535967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.3460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060535967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.7459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060596269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.7459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060596269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.64.1045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.64.1045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839239"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "Nanotubes are basically one-dimensional hollow materials [1]. In principle they can be formed by almost any compound, using a template Growth mechanism, such as the sol-gel method which involves the synthesis of the desired material within the pores of a nanoporous membrane or other solid. Examples of success synthesis include TiO2, V2O5, MnO2, Co3O4, ZnO, WO3, SiO2, Al2O3 and ZrO2 nanostructures [2\u20134]. Most of these synthesized nanotubes made from three-dimensional crystals are, however, of either amorphous or semi-crystalline nature. In forming a nanotube by a three-dimensional compound, such as TiO2, since the nanotube is a rolled-up structure of a two-dimensional sheet, it is impossible that all the chemical bonds of the threedimensional compound will be fully satisfied on the nanotube surfaces so that to form a perfectly ordered, flawless nanotubular structure. Therefore nanotubes made from three-dimensional compounds cannot form a fully crystalline structure and the nanotube surface is normally active.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-28747-8_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-28706-5", 
        "978-0-387-28747-8"
      ], 
      "name": "Nanowires and Nanobelts", 
      "type": "Book"
    }, 
    "name": "One-Step Hydrothermal Synthesis and Characterizations of Titanate Nanostructures", 
    "pagination": "157-171", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006333579"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-28747-8_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e2b150f8a829afae8a8c03429a2983e3dc48980a3edabf49254b3dcb2331c73"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-28747-8_9", 
      "https://app.dimensions.ai/details/publication/pub.1006333579"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99290_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-0-387-28747-8_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-28747-8_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-28747-8_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-28747-8_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-28747-8_9'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      22 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-28747-8_9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N528766247045458b8a433755739ac1c8
4 schema:citation sg:pub.10.1038/35104607
5 sg:pub.10.1038/354056a0
6 https://doi.org/10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h
7 https://doi.org/10.1002/1521-4095(20020903)14:17<1208::aid-adma1208>3.0.co;2-0
8 https://doi.org/10.1016/0022-4596(92)90184-w
9 https://doi.org/10.1021/cm970268y
10 https://doi.org/10.1021/cr00035a013
11 https://doi.org/10.1021/ja00114a031
12 https://doi.org/10.1021/la9713816
13 https://doi.org/10.1063/1.1423403
14 https://doi.org/10.1063/1.447218
15 https://doi.org/10.1063/1.882658
16 https://doi.org/10.1103/physrevb.30.3460
17 https://doi.org/10.1103/physrevb.61.7459
18 https://doi.org/10.1103/revmodphys.64.1045
19 https://doi.org/10.1107/s0108768102009084
20 https://doi.org/10.1107/s0365110x57002194
21 https://doi.org/10.1107/s0365110x62000523
22 https://doi.org/10.1557/jmr.1997.0089
23 schema:datePublished 2003
24 schema:datePublishedReg 2003-01-01
25 schema:description Nanotubes are basically one-dimensional hollow materials [1]. In principle they can be formed by almost any compound, using a template Growth mechanism, such as the sol-gel method which involves the synthesis of the desired material within the pores of a nanoporous membrane or other solid. Examples of success synthesis include TiO2, V2O5, MnO2, Co3O4, ZnO, WO3, SiO2, Al2O3 and ZrO2 nanostructures [2–4]. Most of these synthesized nanotubes made from three-dimensional crystals are, however, of either amorphous or semi-crystalline nature. In forming a nanotube by a three-dimensional compound, such as TiO2, since the nanotube is a rolled-up structure of a two-dimensional sheet, it is impossible that all the chemical bonds of the threedimensional compound will be fully satisfied on the nanotube surfaces so that to form a perfectly ordered, flawless nanotubular structure. Therefore nanotubes made from three-dimensional compounds cannot form a fully crystalline structure and the nanotube surface is normally active.
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N13937a75a31e431aafe6f96f757b53f5
30 schema:name One-Step Hydrothermal Synthesis and Characterizations of Titanate Nanostructures
31 schema:pagination 157-171
32 schema:productId N406339062ef24164854eff7ba68c5336
33 N60891240c97b458184fb45338f12c183
34 N73df758012234231889a66d67570f378
35 schema:publisher N509dc5cb73624caba615776aa62c1811
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006333579
37 https://doi.org/10.1007/978-0-387-28747-8_9
38 schema:sdDatePublished 2019-04-16T07:34
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N6ae3cd7bb4b547b19a04b7167d38421f
41 schema:url https://link.springer.com/10.1007%2F978-0-387-28747-8_9
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N13937a75a31e431aafe6f96f757b53f5 schema:isbn 978-0-387-28706-5
46 978-0-387-28747-8
47 schema:name Nanowires and Nanobelts
48 rdf:type schema:Book
49 N34636f3cb2524886b23b018177a998fa rdf:first sg:person.01221261570.80
50 rdf:rest N9d2a71ce2d774320968053fb284421eb
51 N406339062ef24164854eff7ba68c5336 schema:name dimensions_id
52 schema:value pub.1006333579
53 rdf:type schema:PropertyValue
54 N509dc5cb73624caba615776aa62c1811 schema:location Boston, MA
55 schema:name Springer US
56 rdf:type schema:Organisation
57 N528766247045458b8a433755739ac1c8 rdf:first sg:person.010515521607.58
58 rdf:rest Nafae4eb7d4694b568f7fac607e9582ca
59 N60891240c97b458184fb45338f12c183 schema:name doi
60 schema:value 10.1007/978-0-387-28747-8_9
61 rdf:type schema:PropertyValue
62 N6ae3cd7bb4b547b19a04b7167d38421f schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N73df758012234231889a66d67570f378 schema:name readcube_id
65 schema:value 1e2b150f8a829afae8a8c03429a2983e3dc48980a3edabf49254b3dcb2331c73
66 rdf:type schema:PropertyValue
67 N9c48bb4964574f1cba93d7e502bcd2f7 rdf:first sg:person.0735056672.19
68 rdf:rest rdf:nil
69 N9d2a71ce2d774320968053fb284421eb rdf:first sg:person.011012403715.10
70 rdf:rest N9c48bb4964574f1cba93d7e502bcd2f7
71 Nafae4eb7d4694b568f7fac607e9582ca rdf:first sg:person.01020455202.54
72 rdf:rest N34636f3cb2524886b23b018177a998fa
73 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
74 schema:name Chemical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Chemistry (incl. Structural)
78 rdf:type schema:DefinedTerm
79 sg:person.01020455202.54 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
80 schema:familyName Chen
81 schema:givenName Qing
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020455202.54
83 rdf:type schema:Person
84 sg:person.010515521607.58 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
85 schema:familyName Peng
86 schema:givenName Lian-Mao
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58
88 rdf:type schema:Person
89 sg:person.011012403715.10 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
90 schema:familyName Zhang
91 schema:givenName S.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011012403715.10
93 rdf:type schema:Person
94 sg:person.01221261570.80 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
95 schema:familyName Du
96 schema:givenName G. H.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221261570.80
98 rdf:type schema:Person
99 sg:person.0735056672.19 schema:affiliation https://www.grid.ac/institutes/grid.11914.3c
100 schema:familyName Zhou
101 schema:givenName W. Z.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735056672.19
103 rdf:type schema:Person
104 sg:pub.10.1038/35104607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025421157
105 https://doi.org/10.1038/35104607
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/354056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485857
108 https://doi.org/10.1038/354056a0
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1033094697
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/1521-4095(20020903)14:17<1208::aid-adma1208>3.0.co;2-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046176743
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0022-4596(92)90184-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1008830324
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1021/cm970268y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035125797
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/cr00035a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053980654
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/ja00114a031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055707905
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/la9713816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032250441
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.1423403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057705129
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.447218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058025238
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.882658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058128115
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.30.3460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060535967
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.61.7459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060596269
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/revmodphys.64.1045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839239
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1107/s0108768102009084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013316947
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1107/s0365110x57002194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022150931
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1107/s0365110x62000523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012129437
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1557/jmr.1997.0089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012847783
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
145 schema:name Department of Electronics, Peking University, 100871, Beijing, China
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.11914.3c schema:alternateName University of St Andrews
148 schema:name School of Chemistry, University of St. Andrew, St. Andrews, KY16 9ST, UK
149 rdf:type schema:Organization
150 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
151 schema:name Beijing Laboratory of Electron Microscopy Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, China
152 Department of Electronics, Peking University, 100871, Beijing, China
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...