Ion-Atom Charge Transfer Reactions at Low Energies View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Muriel Gargaud , Ronald McCarroll

ABSTRACT

Ion-atom charge exchange reactions contribute significantly to the ionization balance of complex ions in many natural environments (astrophysical photoionized plasmas such as planetary nebulae, nova shells, etc.) [51.1]. For electron temperatures lower than 106 K, the abundance of neutral atomic H or He can be sufficient for the charge exchange rate to exceed the radiative (direct or dielectronic) recombination rate for ions with charge q ≥ 2 [51.2]. In the case of singly charged ions, accidental resonance conditions are required for the charge exchange rate to be large at thermal energies. In this chapter, we shall limit discussion to the case of q ≥ 2. We may distinguish two types of reaction: type I, for which electron capture takes place with no change in the configuration of the core electrons, and type II, for which electron capture is accompanied by a rearrangement of the core electron configuration. We shall concentrate on the low energy range (less than a few hundred eV), where an adiabatic representation of the collision complex can successfully describe the collision dynamics [51.3]. Nonadiabatic transitions tend to occur in the vicinity of avoided potential energy crossings. For the transition probability to be appreciable, the energy separation Δ X at the crossing radius R X must be neither too large nor too small (0.1< Δ X <3 eV). Since the size of Δ X is determined by electron exchange, whose effect varies exponentially with internuclear distance, only crossings in the range 3≤ R X ≤ 15a 0 induce nonadiabatic transitions. Because of this constraint, the number of effective curve crossings is quite small and the electron capture process is very state selective [51.3]. More... »

PAGES

761-773

References to SciGraph publications

Book

TITLE

Springer Handbook of Atomic, Molecular, and Optical Physics

ISBN

978-0-387-20802-2
978-0-387-26308-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-0-387-26308-3_51

DOI

http://dx.doi.org/10.1007/978-0-387-26308-3_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014467879


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Observatoire Aquitain des Sciences de l'Univers", 
          "id": "https://www.grid.ac/institutes/grid.470942.c", 
          "name": [
            "Observatoire Aquitain des Sciences de l'Univers, 2 Rue de l'Observatoire, 33270\u00a0Floirac, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gargaud", 
        "givenName": "Muriel", 
        "id": "sg:person.011325205753.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011325205753.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Laboratoire de Chimie Physique, Universit\u00e9 Pierre et Marie Curie, 11 rue Pierre et Marie Curie, 75231\u00a0Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCarroll", 
        "givenName": "Ronald", 
        "id": "sg:person.0716274776.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716274776.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0021-9991(73)90049-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000903980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268977400100131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000920395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1974.0147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002761336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/27/16/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004471356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/23/4/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008742273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1958.0075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011190204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/21/3/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020317230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/27/14/042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027231790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/27/14/040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039838896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01437135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040141730", 
          "https://doi.org/10.1007/bf01437135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01437135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040141730", 
          "https://doi.org/10.1007/bf01437135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/24/18/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041204518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/27/19/024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052785901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/158395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058489685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3700/12/1/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058948210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3700/15/1/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058949893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3700/19/10/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058952123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3700/20/7/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058953413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/51/6/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059000683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/14/9/021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059065802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.179.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.179.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.181.311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060441613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.181.311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060441613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.18.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.18.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.25.2850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.25.2850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060474911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.r13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.r13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.052705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060499115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.052705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060499115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.3261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.3261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.4127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.4127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.53.2224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063107814"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Ion-atom charge exchange reactions contribute significantly to the ionization balance of complex ions in many natural environments (astrophysical photoionized plasmas such as planetary nebulae, nova shells, etc.)\u00a0[51.1]. For electron temperatures lower than 106\u2009K, the abundance of neutral atomic H or He can be sufficient for the charge exchange rate to exceed the radiative (direct or dielectronic) recombination rate for ions with charge q\u2009\u2265\u20092\u00a0[51.2]. In the case of singly charged ions, accidental resonance conditions are required for the charge exchange rate to be large at thermal energies. In this chapter, we shall limit discussion to the case of q\u2009\u2265\u20092. We may distinguish two types of reaction: type I, for which electron capture takes place with no change in the configuration of the core electrons, and type II, for which electron capture is accompanied by a rearrangement of the core electron configuration. We shall concentrate on the low energy range (less than a few hundred eV), where an adiabatic representation of the collision complex can successfully describe the collision dynamics\u00a0[51.3]. Nonadiabatic transitions tend to occur in the vicinity of avoided potential energy crossings. For the transition probability to be appreciable, the energy separation \u0394 X at the crossing radius R X must be neither too large nor too small (0.1<\u2009\u0394 X \u2009<3\u2009eV). Since the size of \u0394 X is determined by electron exchange, whose effect varies exponentially with internuclear distance, only crossings in the range 3\u2264\u2009R X \u2009\u2264\u200915a 0 induce nonadiabatic transitions. Because of this constraint, the number of effective curve crossings is quite small and the electron capture process is very state selective\u00a0[51.3].", 
    "editor": [
      {
        "familyName": "Drake", 
        "givenName": "Gordon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-0-387-26308-3_51", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-20802-2", 
        "978-0-387-26308-3"
      ], 
      "name": "Springer Handbook of Atomic, Molecular, and Optical Physics", 
      "type": "Book"
    }, 
    "name": "Ion-Atom Charge Transfer Reactions at Low Energies", 
    "pagination": "761-773", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-0-387-26308-3_51"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "44ed271f05e4e9f42d1f61eeb06add8fce5f6c1803f36fed982d2ee37bf13339"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014467879"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-0-387-26308-3_51", 
      "https://app.dimensions.ai/details/publication/pub.1014467879"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000252.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-0-387-26308-3_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-26308-3_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-26308-3_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-26308-3_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-26308-3_51'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      23 PREDICATES      58 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-0-387-26308-3_51 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ne3c3810e2c1e449ba5da549cb99f4558
4 schema:citation sg:pub.10.1007/bf01437135
5 https://doi.org/10.1016/0021-9991(73)90049-1
6 https://doi.org/10.1080/00268977400100131
7 https://doi.org/10.1086/158395
8 https://doi.org/10.1088/0022-3700/12/1/014
9 https://doi.org/10.1088/0022-3700/15/1/018
10 https://doi.org/10.1088/0022-3700/19/10/007
11 https://doi.org/10.1088/0022-3700/20/7/022
12 https://doi.org/10.1088/0031-8949/51/6/008
13 https://doi.org/10.1088/0305-4470/14/9/021
14 https://doi.org/10.1088/0953-4075/21/3/018
15 https://doi.org/10.1088/0953-4075/23/4/006
16 https://doi.org/10.1088/0953-4075/24/18/017
17 https://doi.org/10.1088/0953-4075/27/14/040
18 https://doi.org/10.1088/0953-4075/27/14/042
19 https://doi.org/10.1088/0953-4075/27/16/010
20 https://doi.org/10.1088/0953-4075/27/19/024
21 https://doi.org/10.1098/rspa.1958.0075
22 https://doi.org/10.1098/rspa.1974.0147
23 https://doi.org/10.1103/physrev.179.111
24 https://doi.org/10.1103/physrev.181.311
25 https://doi.org/10.1103/physreva.14.579
26 https://doi.org/10.1103/physreva.18.117
27 https://doi.org/10.1103/physreva.25.2850
28 https://doi.org/10.1103/physreva.34.1752
29 https://doi.org/10.1103/physreva.54.r13
30 https://doi.org/10.1103/physreva.67.052705
31 https://doi.org/10.1103/physrevlett.65.3261
32 https://doi.org/10.1103/physrevlett.71.4127
33 https://doi.org/10.1103/physrevlett.83.4041
34 https://doi.org/10.1143/jpsj.53.2224
35 schema:datePublished 2006
36 schema:datePublishedReg 2006-01-01
37 schema:description Ion-atom charge exchange reactions contribute significantly to the ionization balance of complex ions in many natural environments (astrophysical photoionized plasmas such as planetary nebulae, nova shells, etc.) [51.1]. For electron temperatures lower than 106 K, the abundance of neutral atomic H or He can be sufficient for the charge exchange rate to exceed the radiative (direct or dielectronic) recombination rate for ions with charge q ≥ 2 [51.2]. In the case of singly charged ions, accidental resonance conditions are required for the charge exchange rate to be large at thermal energies. In this chapter, we shall limit discussion to the case of q ≥ 2. We may distinguish two types of reaction: type I, for which electron capture takes place with no change in the configuration of the core electrons, and type II, for which electron capture is accompanied by a rearrangement of the core electron configuration. We shall concentrate on the low energy range (less than a few hundred eV), where an adiabatic representation of the collision complex can successfully describe the collision dynamics [51.3]. Nonadiabatic transitions tend to occur in the vicinity of avoided potential energy crossings. For the transition probability to be appreciable, the energy separation Δ X at the crossing radius R X must be neither too large nor too small (0.1< Δ X  <3 eV). Since the size of Δ X is determined by electron exchange, whose effect varies exponentially with internuclear distance, only crossings in the range 3≤ R X  ≤ 15a 0 induce nonadiabatic transitions. Because of this constraint, the number of effective curve crossings is quite small and the electron capture process is very state selective [51.3].
38 schema:editor Nc06c73520dec4aaba185c012e210d93c
39 schema:genre chapter
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf Nd26e1bcc1cbc4db9a1c4a10bf1ccdd5f
43 schema:name Ion-Atom Charge Transfer Reactions at Low Energies
44 schema:pagination 761-773
45 schema:productId N132b7fae2608420094421ab6e270a14c
46 N5955e02068314101a62f61f9e17a9ac3
47 Nb885665952b94ca18efde9a2aa9c20cd
48 schema:publisher N12128bb60753489ca321392a075f7163
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014467879
50 https://doi.org/10.1007/978-0-387-26308-3_51
51 schema:sdDatePublished 2019-04-15T14:23
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nad285ff594e64298ab38c2a92de0019a
54 schema:url http://link.springer.com/10.1007/978-0-387-26308-3_51
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N12128bb60753489ca321392a075f7163 schema:location New York, NY
59 schema:name Springer New York
60 rdf:type schema:Organisation
61 N132b7fae2608420094421ab6e270a14c schema:name doi
62 schema:value 10.1007/978-0-387-26308-3_51
63 rdf:type schema:PropertyValue
64 N5955e02068314101a62f61f9e17a9ac3 schema:name dimensions_id
65 schema:value pub.1014467879
66 rdf:type schema:PropertyValue
67 N5c5a31cce795439ead693acc04c61feb rdf:first sg:person.0716274776.60
68 rdf:rest rdf:nil
69 N5e60a38e720543b99c860607e4acaad4 schema:familyName Drake
70 schema:givenName Gordon
71 rdf:type schema:Person
72 Nad285ff594e64298ab38c2a92de0019a schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nb885665952b94ca18efde9a2aa9c20cd schema:name readcube_id
75 schema:value 44ed271f05e4e9f42d1f61eeb06add8fce5f6c1803f36fed982d2ee37bf13339
76 rdf:type schema:PropertyValue
77 Nc06c73520dec4aaba185c012e210d93c rdf:first N5e60a38e720543b99c860607e4acaad4
78 rdf:rest rdf:nil
79 Nd26e1bcc1cbc4db9a1c4a10bf1ccdd5f schema:isbn 978-0-387-20802-2
80 978-0-387-26308-3
81 schema:name Springer Handbook of Atomic, Molecular, and Optical Physics
82 rdf:type schema:Book
83 Ne3c3810e2c1e449ba5da549cb99f4558 rdf:first sg:person.011325205753.93
84 rdf:rest N5c5a31cce795439ead693acc04c61feb
85 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
89 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
90 rdf:type schema:DefinedTerm
91 sg:person.011325205753.93 schema:affiliation https://www.grid.ac/institutes/grid.470942.c
92 schema:familyName Gargaud
93 schema:givenName Muriel
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011325205753.93
95 rdf:type schema:Person
96 sg:person.0716274776.60 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
97 schema:familyName McCarroll
98 schema:givenName Ronald
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716274776.60
100 rdf:type schema:Person
101 sg:pub.10.1007/bf01437135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040141730
102 https://doi.org/10.1007/bf01437135
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0021-9991(73)90049-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000903980
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1080/00268977400100131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000920395
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1086/158395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058489685
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/0022-3700/12/1/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058948210
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/0022-3700/15/1/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058949893
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1088/0022-3700/19/10/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058952123
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0022-3700/20/7/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058953413
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1088/0031-8949/51/6/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059000683
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0305-4470/14/9/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059065802
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/0953-4075/21/3/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020317230
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/0953-4075/23/4/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008742273
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1088/0953-4075/24/18/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041204518
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1088/0953-4075/27/14/040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039838896
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1088/0953-4075/27/14/042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027231790
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1088/0953-4075/27/16/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004471356
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1088/0953-4075/27/19/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052785901
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1098/rspa.1958.0075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011190204
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1098/rspa.1974.0147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002761336
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrev.179.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440949
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrev.181.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060441613
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physreva.14.579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466121
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physreva.18.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467129
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreva.25.2850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060470130
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreva.34.1752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060474911
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreva.54.r13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492257
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreva.67.052705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060499115
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.65.3261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801757
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.71.4127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808205
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.83.4041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820332
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1143/jpsj.53.2224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063107814
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
165 schema:name Laboratoire de Chimie Physique, Université Pierre et Marie Curie, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.470942.c schema:alternateName Observatoire Aquitain des Sciences de l'Univers
168 schema:name Observatoire Aquitain des Sciences de l'Univers, 2 Rue de l'Observatoire, 33270 Floirac, France
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...