2006
AUTHORSBarbara Paldus , Alexander Kachanov
ABSTRACTCavity enhanced spectroscopy (CES) methodology provides a much higher degree of sensitivity than that available from conventional absorption spectrometers. The aim of this chapter is to present the fundamentals of the method, and the various modifications and extensions that have been developed. In order to set the stage, the limitations of traditional absorption spectrometers are first discussed, followed by a description of cavity ring-down spectroscopy (CRDS), the most popular CES embodiment. A few other well-known CES approaches are also described in detail. The chapter concludes with a discussion of recent work on extending CRDS to the study of liquids and solids. More... »
PAGES633-640
Springer Handbook of Atomic, Molecular, and Optical Physics
ISBN
978-0-387-20802-2
978-0-387-26308-3
http://scigraph.springernature.com/pub.10.1007/978-0-387-26308-3_43
DOIhttp://dx.doi.org/10.1007/978-0-387-26308-3_43
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020864727
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Skymoon Ventures, 3045 Park Boulevard, 94306\u00a0Palo Alto, CA, USA"
],
"type": "Organization"
},
"familyName": "Paldus",
"givenName": "Barbara",
"id": "sg:person.01256577473.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256577473.55"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Picarro (United States)",
"id": "https://www.grid.ac/institutes/grid.423093.f",
"name": [
"Picarro, Inc., Research and Development, 480 Oakmead Parkway, 94085\u00a0Sunnyvale, CA, USA"
],
"type": "Organization"
},
"familyName": "Kachanov",
"givenName": "Alexander",
"id": "sg:person.01164570466.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164570466.86"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/s0009-2614(99)00547-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006103447"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0009-2614(98)00500-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011380235"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0009-2614(96)01048-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027131775"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0009-2614(97)00406-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043172503"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ac0340152",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054994902"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ac0340152",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054994902"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ac048444r",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054996110"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ac048444r",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054996110"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1139895",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057667414"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1147092",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057675326"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1148230",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057676576"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1149533",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057678007"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1150206",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057678738"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1527893",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057716678"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1711189",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057779564"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.474808",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058058482"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.83.3093",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060820174"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.83.3093",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060820174"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/ao.38.003951",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065114419"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/ao.40.004416",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065116651"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/ao.40.004904",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065116702"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/ao.41.003567",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065117354"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/josab.15.000006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065168794"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/josab.16.002247",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065169445"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/opex.13.003376",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065243990"
],
"type": "CreativeWork"
}
],
"datePublished": "2006",
"datePublishedReg": "2006-01-01",
"description": "Cavity enhanced spectroscopy\u00a0(CES) methodology provides a\u00a0much higher degree of sensitivity than that available from conventional absorption spectrometers. The aim of this chapter is to present the fundamentals of the method, and the various modifications and extensions that have been developed. In order to set the stage, the limitations of traditional absorption spectrometers are first discussed, followed by a\u00a0description of cavity ring-down spectroscopy\u00a0(CRDS), the most popular CES embodiment. A\u00a0few other well-known CES approaches are also described in detail. The chapter concludes with a\u00a0discussion of recent work on extending CRDS to the study of liquids and solids.",
"editor": [
{
"familyName": "Drake",
"givenName": "Gordon",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-0-387-26308-3_43",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-0-387-20802-2",
"978-0-387-26308-3"
],
"name": "Springer Handbook of Atomic, Molecular, and Optical Physics",
"type": "Book"
},
"name": "Spectroscopic Techniques: Cavity-Enhanced Methods",
"pagination": "633-640",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-0-387-26308-3_43"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"636962b9bd600cdd484266752a7963669547b1b99f36a048dd6a584c808b0525"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020864727"
]
}
],
"publisher": {
"location": "New York, NY",
"name": "Springer New York",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-0-387-26308-3_43",
"https://app.dimensions.ai/details/publication/pub.1020864727"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T16:16",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000256.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-0-387-26308-3_43"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-26308-3_43'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-26308-3_43'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-26308-3_43'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-0-387-26308-3_43'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
23 PREDICATES
49 URIs
20 LITERALS
8 BLANK NODES