Mathematical modelling of tumour growth and treatment View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006-01-01

AUTHORS

A. Fasano , A. Bertuzzi , A. Gandolfi

ABSTRACT

We review some of the models that have been proposed to describe tumour growth and treatment. A first class is that of models which include the analysis of stresses. Here the question of blood vessel collapse in vascular tumours is treated briefly. Results on the existence of radially- and of non-radially-symmetric solutions are illustrated together with an investigation of their stability. Two sections are devoted to tumour cords (growing directly around a blood vessel), highlighting basic facts that are indeed important in the evolution of solid tumours in the presence of necrotic regions. Tumour cords are also taken as an example to deal with certain aspects of tumour treatment. The latter subject is too large to be treated exhaustively but a brief account of the mathematical modelling of hyperthermia is given. More... »

PAGES

71-108

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/88-470-0396-2_3

DOI

http://dx.doi.org/10.1007/88-470-0396-2_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030517664


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica \u201cU. Dini\u201d, Universit\u00e0 di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Dipartimento di Matematica \u201cU. Dini\u201d, Universit\u00e0 di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fasano", 
        "givenName": "A.", 
        "id": "sg:person.01261515206.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261515206.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, Viale Manzoni 30, 00185, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, Viale Manzoni 30, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertuzzi", 
        "givenName": "A.", 
        "id": "sg:person.01321457652.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321457652.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, Viale Manzoni 30, 00185, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419461.f", 
          "name": [
            "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d, Viale Manzoni 30, 00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandolfi", 
        "givenName": "A.", 
        "id": "sg:person.0623363352.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-01-01", 
    "datePublishedReg": "2006-01-01", 
    "description": "We review some of the models that have been proposed to describe tumour growth and treatment. A first class is that of models which include the analysis of stresses. Here the question of blood vessel collapse in vascular tumours is treated briefly. Results on the existence of radially- and of non-radially-symmetric solutions are illustrated together with an investigation of their stability. Two sections are devoted to tumour cords (growing directly around a blood vessel), highlighting basic facts that are indeed important in the evolution of solid tumours in the presence of necrotic regions. Tumour cords are also taken as an example to deal with certain aspects of tumour treatment. The latter subject is too large to be treated exhaustively but a brief account of the mathematical modelling of hyperthermia is given.", 
    "editor": [
      {
        "familyName": "Quarteroni", 
        "givenName": "Alfio", 
        "type": "Person"
      }, 
      {
        "familyName": "Formaggia", 
        "givenName": "Luca", 
        "type": "Person"
      }, 
      {
        "familyName": "Veneziani", 
        "givenName": "Alessandro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/88-470-0396-2_3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-88-470-0394-1", 
        "978-88-470-0396-5"
      ], 
      "name": "Complex Systems in Biomedicine", 
      "type": "Book"
    }, 
    "keywords": [
      "mathematical modelling", 
      "symmetric solutions", 
      "tumor cords", 
      "basic facts", 
      "first class", 
      "modelling", 
      "latter subjects", 
      "model", 
      "class", 
      "solution", 
      "existence", 
      "analysis of stress", 
      "brief account", 
      "vessel collapse", 
      "stability", 
      "certain aspects", 
      "account", 
      "fact", 
      "results", 
      "evolution", 
      "analysis", 
      "questions", 
      "aspects", 
      "sections", 
      "collapse", 
      "region", 
      "investigation", 
      "presence", 
      "tumor treatment", 
      "subjects", 
      "tumor growth", 
      "growth", 
      "necrotic regions", 
      "stress", 
      "treatment", 
      "vascular tumors", 
      "hyperthermia", 
      "solid tumors", 
      "example", 
      "tumors", 
      "cord", 
      "blood vessel collapse"
    ], 
    "name": "Mathematical modelling of tumour growth and treatment", 
    "pagination": "71-108", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030517664"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/88-470-0396-2_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/88-470-0396-2_3", 
      "https://app.dimensions.ai/details/publication/pub.1030517664"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_207.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/88-470-0396-2_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/88-470-0396-2_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/88-470-0396-2_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/88-470-0396-2_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/88-470-0396-2_3'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      67 URIs      60 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/88-470-0396-2_3 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Ne558f6ea92c245229ae0cdfc87c5a42a
4 schema:datePublished 2006-01-01
5 schema:datePublishedReg 2006-01-01
6 schema:description We review some of the models that have been proposed to describe tumour growth and treatment. A first class is that of models which include the analysis of stresses. Here the question of blood vessel collapse in vascular tumours is treated briefly. Results on the existence of radially- and of non-radially-symmetric solutions are illustrated together with an investigation of their stability. Two sections are devoted to tumour cords (growing directly around a blood vessel), highlighting basic facts that are indeed important in the evolution of solid tumours in the presence of necrotic regions. Tumour cords are also taken as an example to deal with certain aspects of tumour treatment. The latter subject is too large to be treated exhaustively but a brief account of the mathematical modelling of hyperthermia is given.
7 schema:editor N3073b0c5e60047cdb2870771978611e8
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf9cb2dca84c84efd82722b23e710c52b
12 schema:keywords account
13 analysis
14 analysis of stress
15 aspects
16 basic facts
17 blood vessel collapse
18 brief account
19 certain aspects
20 class
21 collapse
22 cord
23 evolution
24 example
25 existence
26 fact
27 first class
28 growth
29 hyperthermia
30 investigation
31 latter subjects
32 mathematical modelling
33 model
34 modelling
35 necrotic regions
36 presence
37 questions
38 region
39 results
40 sections
41 solid tumors
42 solution
43 stability
44 stress
45 subjects
46 symmetric solutions
47 treatment
48 tumor cords
49 tumor growth
50 tumor treatment
51 tumors
52 vascular tumors
53 vessel collapse
54 schema:name Mathematical modelling of tumour growth and treatment
55 schema:pagination 71-108
56 schema:productId N1283ae74d2924d9f8e1e9da0d65635be
57 Ne3a972f57f054542801325ffbfd5f20a
58 schema:publisher N53651eee3670405bb05a00dfe1cbdcc6
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030517664
60 https://doi.org/10.1007/88-470-0396-2_3
61 schema:sdDatePublished 2021-12-01T19:59
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N557b570af67845a19e56286f0da4d166
64 schema:url https://doi.org/10.1007/88-470-0396-2_3
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N1283ae74d2924d9f8e1e9da0d65635be schema:name dimensions_id
69 schema:value pub.1030517664
70 rdf:type schema:PropertyValue
71 N2863647a5966463da68c5ae959faa56f schema:familyName Veneziani
72 schema:givenName Alessandro
73 rdf:type schema:Person
74 N2aad157dec2f40428d1c249a20461345 schema:familyName Formaggia
75 schema:givenName Luca
76 rdf:type schema:Person
77 N3073b0c5e60047cdb2870771978611e8 rdf:first N4707bd893e0840b492bbcb7ec6390dd4
78 rdf:rest N6bd19eb5682d404c90e194b345c18557
79 N4707bd893e0840b492bbcb7ec6390dd4 schema:familyName Quarteroni
80 schema:givenName Alfio
81 rdf:type schema:Person
82 N49877dcc8a2f460aad7347bbc2bb073d rdf:first N2863647a5966463da68c5ae959faa56f
83 rdf:rest rdf:nil
84 N53651eee3670405bb05a00dfe1cbdcc6 schema:name Springer Nature
85 rdf:type schema:Organisation
86 N557b570af67845a19e56286f0da4d166 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N673a86dfa39a43868492d8e482dabf63 rdf:first sg:person.01321457652.97
89 rdf:rest Ndab3df6e209e4d1a87e9ee4260f16345
90 N6bd19eb5682d404c90e194b345c18557 rdf:first N2aad157dec2f40428d1c249a20461345
91 rdf:rest N49877dcc8a2f460aad7347bbc2bb073d
92 Ndab3df6e209e4d1a87e9ee4260f16345 rdf:first sg:person.0623363352.52
93 rdf:rest rdf:nil
94 Ne3a972f57f054542801325ffbfd5f20a schema:name doi
95 schema:value 10.1007/88-470-0396-2_3
96 rdf:type schema:PropertyValue
97 Ne558f6ea92c245229ae0cdfc87c5a42a rdf:first sg:person.01261515206.84
98 rdf:rest N673a86dfa39a43868492d8e482dabf63
99 Nf9cb2dca84c84efd82722b23e710c52b schema:isbn 978-88-470-0394-1
100 978-88-470-0396-5
101 schema:name Complex Systems in Biomedicine
102 rdf:type schema:Book
103 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
104 schema:name Mathematical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
107 schema:name Applied Mathematics
108 rdf:type schema:DefinedTerm
109 sg:person.01261515206.84 schema:affiliation grid-institutes:grid.8404.8
110 schema:familyName Fasano
111 schema:givenName A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261515206.84
113 rdf:type schema:Person
114 sg:person.01321457652.97 schema:affiliation grid-institutes:grid.419461.f
115 schema:familyName Bertuzzi
116 schema:givenName A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321457652.97
118 rdf:type schema:Person
119 sg:person.0623363352.52 schema:affiliation grid-institutes:grid.419461.f
120 schema:familyName Gandolfi
121 schema:givenName A.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52
123 rdf:type schema:Person
124 grid-institutes:grid.419461.f schema:alternateName Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, Viale Manzoni 30, 00185, Rome, Italy
125 schema:name Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, Viale Manzoni 30, 00185, Rome, Italy
126 rdf:type schema:Organization
127 grid-institutes:grid.8404.8 schema:alternateName Dipartimento di Matematica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy
128 schema:name Dipartimento di Matematica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...