Blockbusters, Bombs and Sleepers: The Income Distribution of Movies View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Sitabhra Sinha , Raj Kumar Pan

ABSTRACT

The distribution of gross earnings of movies released each year show a distribution having a power-law tail with Pareto exponent α ≃ 2. While this offers interesting parallels with income distributions of individuals, it is also clear that it cannot be explained by simple asset exchange models, as movies do not interact with each other directly. In fact, movies (because of the large quantity of data available on their earnings) provide the best entry-point for studying the dynamics of how “a hit is born” and the resulting distribution of popularity (of products or ideas). In this paper, we show evidence of Pareto law for movie income, as well as, an analysis of the time-evolution of income. More... »

PAGES

43-47

Book

TITLE

Econophysics of Wealth Distributions

ISBN

978-88-470-0329-3
978-88-470-0389-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/88-470-0389-x_5

DOI

http://dx.doi.org/10.1007/88-470-0389-x_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002921127


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Institute of Mathematical Sciences, C. I. T. Campus, 600 113, Taramani, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, C. I. T. Campus, 600 113, Taramani, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinha", 
        "givenName": "Sitabhra", 
        "id": "sg:person.01106420703.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Institute of Mathematical Sciences, C. I. T. Campus, 600 113, Taramani, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, C. I. T. Campus, 600 113, Taramani, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Raj Kumar", 
        "id": "sg:person.01255205211.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255205211.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "The distribution of gross earnings of movies released each year show a distribution having a power-law tail with Pareto exponent \u03b1 \u2243 2. While this offers interesting parallels with income distributions of individuals, it is also clear that it cannot be explained by simple asset exchange models, as movies do not interact with each other directly. In fact, movies (because of the large quantity of data available on their earnings) provide the best entry-point for studying the dynamics of how \u201ca hit is born\u201d and the resulting distribution of popularity (of products or ideas). In this paper, we show evidence of Pareto law for movie income, as well as, an analysis of the time-evolution of income.", 
    "editor": [
      {
        "familyName": "Chatterjee", 
        "givenName": "Arnab", 
        "type": "Person"
      }, 
      {
        "familyName": "Yarlagadda", 
        "givenName": "Sudhakar", 
        "type": "Person"
      }, 
      {
        "familyName": "Chakrabarti", 
        "givenName": "Bikas K", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/88-470-0389-x_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-88-470-0329-3", 
        "978-88-470-0389-7"
      ], 
      "name": "Econophysics of Wealth Distributions", 
      "type": "Book"
    }, 
    "keywords": [
      "income distribution", 
      "asset exchange models", 
      "gross earnings", 
      "Pareto law", 
      "income", 
      "power-law tail", 
      "earnings", 
      "exchange model", 
      "evidence", 
      "blockbusters", 
      "model", 
      "interesting parallels", 
      "distribution", 
      "fact", 
      "dynamics", 
      "law", 
      "individuals", 
      "analysis", 
      "tail", 
      "popularity", 
      "years", 
      "movies", 
      "exponent \u03b1", 
      "hits", 
      "bomb", 
      "parallel", 
      "distribution of popularity", 
      "sleepers", 
      "paper"
    ], 
    "name": "Blockbusters, Bombs and Sleepers: The Income Distribution of Movies", 
    "pagination": "43-47", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002921127"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/88-470-0389-x_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/88-470-0389-x_5", 
      "https://app.dimensions.ai/details/publication/pub.1002921127"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_98.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/88-470-0389-x_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/88-470-0389-x_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/88-470-0389-x_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/88-470-0389-x_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/88-470-0389-x_5'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      55 URIs      48 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/88-470-0389-x_5 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author Nacd884e6c83f475a838297b7be6dcb97
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description The distribution of gross earnings of movies released each year show a distribution having a power-law tail with Pareto exponent α ≃ 2. While this offers interesting parallels with income distributions of individuals, it is also clear that it cannot be explained by simple asset exchange models, as movies do not interact with each other directly. In fact, movies (because of the large quantity of data available on their earnings) provide the best entry-point for studying the dynamics of how “a hit is born” and the resulting distribution of popularity (of products or ideas). In this paper, we show evidence of Pareto law for movie income, as well as, an analysis of the time-evolution of income.
7 schema:editor N400b776d980748e0b6e783641536a81f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N30a169eb7cbf4630984a18292cfa3d6b
12 schema:keywords Pareto law
13 analysis
14 asset exchange models
15 blockbusters
16 bomb
17 distribution
18 distribution of popularity
19 dynamics
20 earnings
21 evidence
22 exchange model
23 exponent α
24 fact
25 gross earnings
26 hits
27 income
28 income distribution
29 individuals
30 interesting parallels
31 law
32 model
33 movies
34 paper
35 parallel
36 popularity
37 power-law tail
38 sleepers
39 tail
40 years
41 schema:name Blockbusters, Bombs and Sleepers: The Income Distribution of Movies
42 schema:pagination 43-47
43 schema:productId N82eda4d0f079430485386b47c0f2c1f9
44 Nabe23492247d4d0c8e38c098a69e3fa5
45 schema:publisher N25b2a3d8a9b946efa06e7d0ad47bdb82
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002921127
47 https://doi.org/10.1007/88-470-0389-x_5
48 schema:sdDatePublished 2022-05-20T07:50
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N50cf25bb3ea74d208d0e84a2b4d6a86c
51 schema:url https://doi.org/10.1007/88-470-0389-x_5
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N01a81cc8c54a49188918d668c524bdae rdf:first N5afaeb59a29c4512bbec2a5594e1ec4e
56 rdf:rest rdf:nil
57 N0c969967a9c54675a7c96aae2e5a454f rdf:first N355399790917479388b8f87560027afd
58 rdf:rest N01a81cc8c54a49188918d668c524bdae
59 N25b2a3d8a9b946efa06e7d0ad47bdb82 schema:name Springer Nature
60 rdf:type schema:Organisation
61 N30a169eb7cbf4630984a18292cfa3d6b schema:isbn 978-88-470-0329-3
62 978-88-470-0389-7
63 schema:name Econophysics of Wealth Distributions
64 rdf:type schema:Book
65 N355399790917479388b8f87560027afd schema:familyName Yarlagadda
66 schema:givenName Sudhakar
67 rdf:type schema:Person
68 N400b776d980748e0b6e783641536a81f rdf:first Ndfcc68d7c9d24ed0956e722e1814dbc5
69 rdf:rest N0c969967a9c54675a7c96aae2e5a454f
70 N50cf25bb3ea74d208d0e84a2b4d6a86c schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N5afaeb59a29c4512bbec2a5594e1ec4e schema:familyName Chakrabarti
73 schema:givenName Bikas K
74 rdf:type schema:Person
75 N82eda4d0f079430485386b47c0f2c1f9 schema:name dimensions_id
76 schema:value pub.1002921127
77 rdf:type schema:PropertyValue
78 Nabe23492247d4d0c8e38c098a69e3fa5 schema:name doi
79 schema:value 10.1007/88-470-0389-x_5
80 rdf:type schema:PropertyValue
81 Nacd884e6c83f475a838297b7be6dcb97 rdf:first sg:person.01106420703.25
82 rdf:rest Nd5d013dc247b452d96943826491ce305
83 Nd5d013dc247b452d96943826491ce305 rdf:first sg:person.01255205211.17
84 rdf:rest rdf:nil
85 Ndfcc68d7c9d24ed0956e722e1814dbc5 schema:familyName Chatterjee
86 schema:givenName Arnab
87 rdf:type schema:Person
88 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
89 schema:name Economics
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
92 schema:name Econometrics
93 rdf:type schema:DefinedTerm
94 sg:person.01106420703.25 schema:affiliation grid-institutes:grid.462414.1
95 schema:familyName Sinha
96 schema:givenName Sitabhra
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25
98 rdf:type schema:Person
99 sg:person.01255205211.17 schema:affiliation grid-institutes:grid.462414.1
100 schema:familyName Pan
101 schema:givenName Raj Kumar
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255205211.17
103 rdf:type schema:Person
104 grid-institutes:grid.462414.1 schema:alternateName The Institute of Mathematical Sciences, C. I. T. Campus, 600 113, Taramani, Chennai, India
105 schema:name The Institute of Mathematical Sciences, C. I. T. Campus, 600 113, Taramani, Chennai, India
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...