Image-Based Cell Quality Assessment: Modeling of Cell Morphology and Quality for Clinical Cell Therapy View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Hiroto Sasaki , Fumiko Matsuoka , Wakana Yamamoto , Kenji Kojima , Hiroyuki Honda , Ryuji Kato

ABSTRACT

In clinical tissue engineering, both safety and effectiveness are definite requirements that should be satisfied. Conventional cell biology techniques are facing limitations in the quality assurance step of cell production for clinical therapy. Image-based cell quality assessment offers a great potential, because it is the only way to non-destructively and repeatedly assess cellular phenotypes and irregularities. To effectively assess cell quality using the multiple parameters derived from time course cell imaging, machine learning models, which have been effectively used to connect biological phenomena with biological measurements in the field of bioinformatics, are promising approaches for achieving high accuracy. Here, we present the recent results of our successful cell quality modeling and discuss its possibility and considerations on further application in clinical cell therapy. More... »

PAGES

207-226

Book

TITLE

Computational Modeling in Tissue Engineering

ISBN

978-3-642-32562-5
978-3-642-32563-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/8415_2012_132

DOI

http://dx.doi.org/10.1007/8415_2012_132

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016500385


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusaku, Nagoya\u00a0464-8603, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasaki", 
        "givenName": "Hiroto", 
        "id": "sg:person.0614016210.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614016210.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusaku, Nagoya\u00a0464-8603, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuoka", 
        "givenName": "Fumiko", 
        "id": "sg:person.01266432206.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266432206.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusaku, Nagoya\u00a0464-8603, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Wakana", 
        "id": "sg:person.013747421035.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747421035.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusaku, Nagoya\u00a0464-8603, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kojima", 
        "givenName": "Kenji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusaku, Nagoya\u00a0464-8603, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Honda", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.016617716011.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617716011.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusaku, Nagoya\u00a0464-8603, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Ryuji", 
        "id": "sg:person.012035757272.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012035757272.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-1198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001559927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010413512", 
          "https://doi.org/10.1186/1471-2105-11-30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010413512", 
          "https://doi.org/10.1186/1471-2105-11-30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-6-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013957577", 
          "https://doi.org/10.1186/1475-925x-6-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1263/jbb.100.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016108481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1263/jbb.100.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016108481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0909597107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016868488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jemt.20340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017013780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12257-009-3057-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017195838", 
          "https://doi.org/10.1007/s12257-009-3057-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12257-009-3057-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017195838", 
          "https://doi.org/10.1007/s12257-009-3057-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020373285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020597415", 
          "https://doi.org/10.1038/nmeth.1486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020597415", 
          "https://doi.org/10.1038/nmeth.1486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1129139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021857158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb1659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021948284", 
          "https://doi.org/10.1038/ncb1659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2005.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026184540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1723(02)80155-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031152675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb1762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031500894", 
          "https://doi.org/10.1038/ncb1762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032259045", 
          "https://doi.org/10.1038/nature10106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/stemcells.20-6-530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034597372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/21137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035350841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiosc.2009.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035622614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiosc.2010.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035821220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-10-r100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040889351", 
          "https://doi.org/10.1186/gb-2006-7-10-r100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0808843106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041235104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.092494.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051935824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053668958", 
          "https://doi.org/10.1038/nmeth876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053668958", 
          "https://doi.org/10.1038/nmeth876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archfaci.1.3.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054102860"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "In clinical tissue engineering, both safety and effectiveness are definite requirements that should be satisfied. Conventional cell biology techniques are facing limitations in the quality assurance step of cell production for clinical therapy. Image-based cell quality assessment offers a great potential, because it is the only way to non-destructively and repeatedly assess cellular phenotypes and irregularities. To effectively assess cell quality using the multiple parameters derived from time course cell imaging, machine learning models, which have been effectively used to connect biological phenomena with biological measurements in the field of bioinformatics, are promising approaches for achieving high accuracy. Here, we present the recent results of our successful cell quality modeling and discuss its possibility and considerations on further application in clinical cell therapy.", 
    "editor": [
      {
        "familyName": "Geris", 
        "givenName": "Liesbet", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/8415_2012_132", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-32562-5", 
        "978-3-642-32563-2"
      ], 
      "name": "Computational Modeling in Tissue Engineering", 
      "type": "Book"
    }, 
    "name": "Image-Based Cell Quality Assessment: Modeling of Cell Morphology and Quality for Clinical Cell Therapy", 
    "pagination": "207-226", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/8415_2012_132"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4e9ea060df231cc4dd4ab9dea92c90f52100e6b109e33236d9ba615333808936"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016500385"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/8415_2012_132", 
      "https://app.dimensions.ai/details/publication/pub.1016500385"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000253.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/8415_2012_132"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/8415_2012_132'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/8415_2012_132'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/8415_2012_132'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/8415_2012_132'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      23 PREDICATES      51 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/8415_2012_132 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N40d1455e9c124601a36b171258191c09
4 schema:citation sg:pub.10.1007/s12257-009-3057-5
5 sg:pub.10.1038/nature10106
6 sg:pub.10.1038/ncb1659
7 sg:pub.10.1038/ncb1762
8 sg:pub.10.1038/nmeth.1486
9 sg:pub.10.1038/nmeth876
10 sg:pub.10.1186/1471-2105-11-30
11 sg:pub.10.1186/1475-925x-6-11
12 sg:pub.10.1186/gb-2006-7-10-r100
13 https://doi.org/10.1001/archfaci.1.3.165
14 https://doi.org/10.1002/jemt.20340
15 https://doi.org/10.1016/j.jbi.2005.05.008
16 https://doi.org/10.1016/j.jbiosc.2009.10.020
17 https://doi.org/10.1016/j.jbiosc.2010.11.014
18 https://doi.org/10.1016/s1389-1723(02)80155-4
19 https://doi.org/10.1073/pnas.0808843106
20 https://doi.org/10.1073/pnas.0909597107
21 https://doi.org/10.1093/bioinformatics/btr095
22 https://doi.org/10.1101/gr.092494.109
23 https://doi.org/10.1126/science.1129139
24 https://doi.org/10.1158/1078-0432.ccr-04-1198
25 https://doi.org/10.1263/jbb.100.119
26 https://doi.org/10.1634/stemcells.20-6-530
27 https://doi.org/10.5772/21137
28 schema:datePublished 2012
29 schema:datePublishedReg 2012-01-01
30 schema:description In clinical tissue engineering, both safety and effectiveness are definite requirements that should be satisfied. Conventional cell biology techniques are facing limitations in the quality assurance step of cell production for clinical therapy. Image-based cell quality assessment offers a great potential, because it is the only way to non-destructively and repeatedly assess cellular phenotypes and irregularities. To effectively assess cell quality using the multiple parameters derived from time course cell imaging, machine learning models, which have been effectively used to connect biological phenomena with biological measurements in the field of bioinformatics, are promising approaches for achieving high accuracy. Here, we present the recent results of our successful cell quality modeling and discuss its possibility and considerations on further application in clinical cell therapy.
31 schema:editor Nc5c9750b5ed641edab7af50abc89e307
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf Nb0dd3b4948334608836abf0f59d3d460
36 schema:name Image-Based Cell Quality Assessment: Modeling of Cell Morphology and Quality for Clinical Cell Therapy
37 schema:pagination 207-226
38 schema:productId N61966464ca0d42a689e22850361a0f95
39 N7b07685d524340769572560c1ccdd275
40 Nfa28826ac3834341801084189a5781b2
41 schema:publisher N588069d69de3410ca30abf6e578a2038
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016500385
43 https://doi.org/10.1007/8415_2012_132
44 schema:sdDatePublished 2019-04-15T10:32
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N8f2fed8d602c4480b6b82cc5addd3e02
47 schema:url http://link.springer.com/10.1007/8415_2012_132
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N3e6c1fc58a8e491eb5888bc74eb17338 rdf:first Nda0a9789a62a4486a483e8304d177ac8
52 rdf:rest N4a1f890bc3ff4c438d967703a3caf09d
53 N40d1455e9c124601a36b171258191c09 rdf:first sg:person.0614016210.03
54 rdf:rest N53887c4239634dda95c3f738674b6292
55 N4a1f890bc3ff4c438d967703a3caf09d rdf:first sg:person.016617716011.29
56 rdf:rest N93560c855de34a88aba4dee4bdf45e72
57 N53887c4239634dda95c3f738674b6292 rdf:first sg:person.01266432206.86
58 rdf:rest N5b7bf8db8ac84a3b8402d1e2c3deedbe
59 N588069d69de3410ca30abf6e578a2038 schema:location Berlin, Heidelberg
60 schema:name Springer Berlin Heidelberg
61 rdf:type schema:Organisation
62 N5b7bf8db8ac84a3b8402d1e2c3deedbe rdf:first sg:person.013747421035.83
63 rdf:rest N3e6c1fc58a8e491eb5888bc74eb17338
64 N61966464ca0d42a689e22850361a0f95 schema:name dimensions_id
65 schema:value pub.1016500385
66 rdf:type schema:PropertyValue
67 N7b07685d524340769572560c1ccdd275 schema:name readcube_id
68 schema:value 4e9ea060df231cc4dd4ab9dea92c90f52100e6b109e33236d9ba615333808936
69 rdf:type schema:PropertyValue
70 N8f2fed8d602c4480b6b82cc5addd3e02 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N93560c855de34a88aba4dee4bdf45e72 rdf:first sg:person.012035757272.46
73 rdf:rest rdf:nil
74 Nb0dd3b4948334608836abf0f59d3d460 schema:isbn 978-3-642-32562-5
75 978-3-642-32563-2
76 schema:name Computational Modeling in Tissue Engineering
77 rdf:type schema:Book
78 Nc5c9750b5ed641edab7af50abc89e307 rdf:first Nd3df69a142de4fe1b8d9750017b04547
79 rdf:rest rdf:nil
80 Nd3df69a142de4fe1b8d9750017b04547 schema:familyName Geris
81 schema:givenName Liesbet
82 rdf:type schema:Person
83 Nda0a9789a62a4486a483e8304d177ac8 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
84 schema:familyName Kojima
85 schema:givenName Kenji
86 rdf:type schema:Person
87 Nfa28826ac3834341801084189a5781b2 schema:name doi
88 schema:value 10.1007/8415_2012_132
89 rdf:type schema:PropertyValue
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
94 schema:name Artificial Intelligence and Image Processing
95 rdf:type schema:DefinedTerm
96 sg:person.012035757272.46 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
97 schema:familyName Kato
98 schema:givenName Ryuji
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012035757272.46
100 rdf:type schema:Person
101 sg:person.01266432206.86 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
102 schema:familyName Matsuoka
103 schema:givenName Fumiko
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266432206.86
105 rdf:type schema:Person
106 sg:person.013747421035.83 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
107 schema:familyName Yamamoto
108 schema:givenName Wakana
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747421035.83
110 rdf:type schema:Person
111 sg:person.016617716011.29 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
112 schema:familyName Honda
113 schema:givenName Hiroyuki
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617716011.29
115 rdf:type schema:Person
116 sg:person.0614016210.03 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
117 schema:familyName Sasaki
118 schema:givenName Hiroto
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614016210.03
120 rdf:type schema:Person
121 sg:pub.10.1007/s12257-009-3057-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017195838
122 https://doi.org/10.1007/s12257-009-3057-5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nature10106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032259045
125 https://doi.org/10.1038/nature10106
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/ncb1659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021948284
128 https://doi.org/10.1038/ncb1659
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/ncb1762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031500894
131 https://doi.org/10.1038/ncb1762
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmeth.1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020597415
134 https://doi.org/10.1038/nmeth.1486
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nmeth876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053668958
137 https://doi.org/10.1038/nmeth876
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/1471-2105-11-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010413512
140 https://doi.org/10.1186/1471-2105-11-30
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1475-925x-6-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013957577
143 https://doi.org/10.1186/1475-925x-6-11
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/gb-2006-7-10-r100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040889351
146 https://doi.org/10.1186/gb-2006-7-10-r100
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1001/archfaci.1.3.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054102860
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/jemt.20340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017013780
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jbi.2005.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026184540
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jbiosc.2009.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035622614
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jbiosc.2010.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035821220
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s1389-1723(02)80155-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031152675
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1073/pnas.0808843106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235104
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1073/pnas.0909597107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016868488
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/bioinformatics/btr095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020373285
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1101/gr.092494.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051935824
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1129139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021857158
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1158/1078-0432.ccr-04-1198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001559927
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1263/jbb.100.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016108481
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1634/stemcells.20-6-530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034597372
175 rdf:type schema:CreativeWork
176 https://doi.org/10.5772/21137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035350841
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
179 schema:name Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusaku, Nagoya 464-8603, Japan
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...