Reporting standards View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-07-06

AUTHORS

Nigel Hardy , Helen Jenkins

ABSTRACT

Metabolomic studies generate large quantities of data. Metabolomics data sets have complexstructure and will typically be subjected to a variety of processing and analysis techniques.The data sets are expensive to collect and can be expected to hold more useful information than isextracted and used by the studies, which collected them. These aspects of metabolomics have causedworkers to consider, from the very early days of the field, what constitutes comprehensive and wellstructured metabolomics data, how it should be collected, how it should be transmitted and how, andwhere it should be stored. It has been generally assumed that the availability of well-curated datasets in standardised formats will pay large dividends for the science. This chapter considers thenature of reporting standards, the benefits that they can yield, existing data standardisation initiativesin metabolomics and related fields and discusses some issue surrounding their development. More... »

PAGES

53-73

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/4735_2007_0242

DOI

http://dx.doi.org/10.1007/4735_2007_0242

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045552473


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Wales, Aberystwyth, Penglais, SY23 3DB, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.8155.9", 
          "name": [
            "Department of Computer Science, University of Wales, Aberystwyth, Penglais, SY23 3DB, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hardy", 
        "givenName": "Nigel", 
        "id": "sg:person.01371321313.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371321313.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Wales, Aberystwyth, Penglais, SY23 3DB, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.8155.9", 
          "name": [
            "Department of Computer Science, University of Wales, Aberystwyth, Penglais, SY23 3DB, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jenkins", 
        "givenName": "Helen", 
        "id": "sg:person.01331167205.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331167205.97"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-07-06", 
    "datePublishedReg": "2007-07-06", 
    "description": "Metabolomic studies generate large quantities of data. Metabolomics data sets have complexstructure and will typically be subjected to a\u00a0variety of processing and analysis techniques.The data sets are expensive to collect and can be expected to hold more useful information than isextracted and used by the studies, which collected them. These aspects of metabolomics have causedworkers to consider, from the very early days of the field, what constitutes comprehensive and wellstructured metabolomics data, how it should be collected, how it should be transmitted and how, andwhere it should be stored. It has been generally assumed that the availability of well-curated datasets in standardised formats will pay large dividends for the science. This chapter considers thenature of reporting standards, the benefits that they can yield, existing data standardisation initiativesin metabolomics and related fields and discusses some issue surrounding their development.", 
    "editor": [
      {
        "familyName": "Nielsen", 
        "givenName": "Jens", 
        "type": "Person"
      }, 
      {
        "familyName": "Jewett", 
        "givenName": "Michael C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/4735_2007_0242", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-74718-5", 
        "978-3-540-74719-2"
      ], 
      "name": "Metabolomics", 
      "type": "Book"
    }, 
    "keywords": [
      "data sets", 
      "metabolomics data sets", 
      "standardised format", 
      "analysis techniques", 
      "variety of processing", 
      "useful information", 
      "related fields", 
      "set", 
      "complexstructure", 
      "datasets", 
      "metabolomics data", 
      "format", 
      "processing", 
      "information", 
      "standards", 
      "early days", 
      "data", 
      "technique", 
      "issues", 
      "large quantities", 
      "field", 
      "availability", 
      "aspects", 
      "science", 
      "benefits", 
      "aspects of metabolomics", 
      "variety", 
      "metabolomics studies", 
      "chapter", 
      "development", 
      "study", 
      "metabolomics", 
      "days", 
      "large dividends", 
      "quantity", 
      "reporting standards", 
      "dividends", 
      "thenature", 
      "causedworkers", 
      "data standardisation initiativesin metabolomics", 
      "standardisation initiativesin metabolomics", 
      "initiativesin metabolomics"
    ], 
    "name": "Reporting standards", 
    "pagination": "53-73", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045552473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/4735_2007_0242"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/4735_2007_0242", 
      "https://app.dimensions.ai/details/publication/pub.1045552473"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_309.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/4735_2007_0242"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/4735_2007_0242'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/4735_2007_0242'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/4735_2007_0242'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/4735_2007_0242'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/4735_2007_0242 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nb1955a4b3e3c46ebbe1516714bd29155
4 schema:datePublished 2007-07-06
5 schema:datePublishedReg 2007-07-06
6 schema:description Metabolomic studies generate large quantities of data. Metabolomics data sets have complexstructure and will typically be subjected to a variety of processing and analysis techniques.The data sets are expensive to collect and can be expected to hold more useful information than isextracted and used by the studies, which collected them. These aspects of metabolomics have causedworkers to consider, from the very early days of the field, what constitutes comprehensive and wellstructured metabolomics data, how it should be collected, how it should be transmitted and how, andwhere it should be stored. It has been generally assumed that the availability of well-curated datasets in standardised formats will pay large dividends for the science. This chapter considers thenature of reporting standards, the benefits that they can yield, existing data standardisation initiativesin metabolomics and related fields and discusses some issue surrounding their development.
7 schema:editor Nc600b3c43fa44e1fbbc45e990e700554
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9b0f42b45c3647209a28c03ae16936cf
12 schema:keywords analysis techniques
13 aspects
14 aspects of metabolomics
15 availability
16 benefits
17 causedworkers
18 chapter
19 complexstructure
20 data
21 data sets
22 data standardisation initiativesin metabolomics
23 datasets
24 days
25 development
26 dividends
27 early days
28 field
29 format
30 information
31 initiativesin metabolomics
32 issues
33 large dividends
34 large quantities
35 metabolomics
36 metabolomics data
37 metabolomics data sets
38 metabolomics studies
39 processing
40 quantity
41 related fields
42 reporting standards
43 science
44 set
45 standardisation initiativesin metabolomics
46 standardised format
47 standards
48 study
49 technique
50 thenature
51 useful information
52 variety
53 variety of processing
54 schema:name Reporting standards
55 schema:pagination 53-73
56 schema:productId N438eaea2b1944dcf93ffa21393065ed7
57 N5be8fef67f6746e3a3f4681db98a474f
58 schema:publisher N7cd9112590584e05819d28a74b37bb2d
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045552473
60 https://doi.org/10.1007/4735_2007_0242
61 schema:sdDatePublished 2021-12-01T20:05
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N7525539f1b834bea83dc4e622c2c47f4
64 schema:url https://doi.org/10.1007/4735_2007_0242
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N438eaea2b1944dcf93ffa21393065ed7 schema:name doi
69 schema:value 10.1007/4735_2007_0242
70 rdf:type schema:PropertyValue
71 N5be8fef67f6746e3a3f4681db98a474f schema:name dimensions_id
72 schema:value pub.1045552473
73 rdf:type schema:PropertyValue
74 N7525539f1b834bea83dc4e622c2c47f4 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N7cd9112590584e05819d28a74b37bb2d schema:name Springer Nature
77 rdf:type schema:Organisation
78 N9b0f42b45c3647209a28c03ae16936cf schema:isbn 978-3-540-74718-5
79 978-3-540-74719-2
80 schema:name Metabolomics
81 rdf:type schema:Book
82 Nb1955a4b3e3c46ebbe1516714bd29155 rdf:first sg:person.01371321313.70
83 rdf:rest Nee34db69183f4c7f8e5c0b4f0a2eee48
84 Nbb531b0154c64282891704c0c4b44026 schema:familyName Nielsen
85 schema:givenName Jens
86 rdf:type schema:Person
87 Nc600b3c43fa44e1fbbc45e990e700554 rdf:first Nbb531b0154c64282891704c0c4b44026
88 rdf:rest Neafea6a4bf1b4f4cb4a15d9bb1087d43
89 Nc90cef3a816e4964b682171dc5ef4a48 schema:familyName Jewett
90 schema:givenName Michael C.
91 rdf:type schema:Person
92 Neafea6a4bf1b4f4cb4a15d9bb1087d43 rdf:first Nc90cef3a816e4964b682171dc5ef4a48
93 rdf:rest rdf:nil
94 Nee34db69183f4c7f8e5c0b4f0a2eee48 rdf:first sg:person.01331167205.97
95 rdf:rest rdf:nil
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information Systems
101 rdf:type schema:DefinedTerm
102 sg:person.01331167205.97 schema:affiliation grid-institutes:grid.8155.9
103 schema:familyName Jenkins
104 schema:givenName Helen
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331167205.97
106 rdf:type schema:Person
107 sg:person.01371321313.70 schema:affiliation grid-institutes:grid.8155.9
108 schema:familyName Hardy
109 schema:givenName Nigel
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371321313.70
111 rdf:type schema:Person
112 grid-institutes:grid.8155.9 schema:alternateName Department of Computer Science, University of Wales, Aberystwyth, Penglais, SY23 3DB, Aberystwyth, UK
113 schema:name Department of Computer Science, University of Wales, Aberystwyth, Penglais, SY23 3DB, Aberystwyth, UK
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...