Polymer conjugates with anticancer activity View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

D. Putnam , J. Kopeček

ABSTRACT

Polymer conjugates may possess anticancer activity through a variety of mechanisms. The macro-molecules themselves may have anticancer activities, or, more typically, inert biocompatible polymers serve as carriers for low molecular weight anticancer agents. Polymer conjugates may also be targeted to increase the concentration of conjugate in the vicinity of a specific subset of cells. This article reviews the recent literature that pertains to polymer conjugates with anticancer activity. The types of polymers chosen as drug carriers and the biodistribution of polymers in the body are discussed. Also, the synthesis, biological properties, and the means used to evaluate the anticancer activities of polymer conjugates are detailed.The rationale for the design of targetable water soluble synthetic polymeric carriers of anticancer drug are explained using copolymers of N-(2-hydroxypropyl)methacrylamide as examples. Comparison of polymer conjugates with other drug delivery systems, i.e., liposomes, nanoparticles, microspheres and immunotoxins, is provided along with the prospects for the future of anticancer drug delivery. More... »

PAGES

55-123

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3540587888_14

DOI

http://dx.doi.org/10.1007/3540587888_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050656671


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departments of Pharmaceutics and Pharmaceutical Chemistry/CCCD, and of Bioengineering, University of Utah, 84112, Salt Lake City, Utah, USA", 
          "id": "http://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Departments of Pharmaceutics and Pharmaceutical Chemistry/CCCD, and of Bioengineering, University of Utah, 84112, Salt Lake City, Utah, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Putnam", 
        "givenName": "D.", 
        "id": "sg:person.01262733306.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262733306.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Pharmaceutics and Pharmaceutical Chemistry/CCCD, and of Bioengineering, University of Utah, 84112, Salt Lake City, Utah, USA", 
          "id": "http://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Departments of Pharmaceutics and Pharmaceutical Chemistry/CCCD, and of Bioengineering, University of Utah, 84112, Salt Lake City, Utah, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kope\u010dek", 
        "givenName": "J.", 
        "id": "sg:person.013234744657.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013234744657.26"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "Polymer conjugates may possess anticancer activity through a variety of mechanisms. The macro-molecules themselves may have anticancer activities, or, more typically, inert biocompatible polymers serve as carriers for low molecular weight anticancer agents. Polymer conjugates may also be targeted to increase the concentration of conjugate in the vicinity of a specific subset of cells. This article reviews the recent literature that pertains to polymer conjugates with anticancer activity. The types of polymers chosen as drug carriers and the biodistribution of polymers in the body are discussed. Also, the synthesis, biological properties, and the means used to evaluate the anticancer activities of polymer conjugates are detailed.The rationale for the design of targetable water soluble synthetic polymeric carriers of anticancer drug are explained using copolymers of N-(2-hydroxypropyl)methacrylamide as examples. Comparison of polymer conjugates with other drug delivery systems, i.e., liposomes, nanoparticles, microspheres and immunotoxins, is provided along with the prospects for the future of anticancer drug delivery.", 
    "editor": [
      {
        "familyName": "Peppas", 
        "givenName": "Nicholas A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Langer", 
        "givenName": "Robert S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3540587888_14", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-58788-0", 
        "978-3-540-49102-6"
      ], 
      "name": "Biopolymers II", 
      "type": "Book"
    }, 
    "keywords": [
      "polymer conjugates", 
      "anticancer activity", 
      "synthetic polymeric carriers", 
      "anticancer drug delivery", 
      "types of polymers", 
      "drug delivery systems", 
      "polymeric carriers", 
      "biocompatible polymers", 
      "drug carriers", 
      "drug delivery", 
      "concentration of conjugates", 
      "polymers", 
      "anticancer agents", 
      "delivery system", 
      "anticancer drugs", 
      "conjugates", 
      "biological properties", 
      "copolymers", 
      "nanoparticles", 
      "carriers", 
      "synthesis", 
      "microspheres", 
      "weight anticancer agents", 
      "liposomes", 
      "biodistribution", 
      "properties", 
      "activity", 
      "concentration", 
      "agents", 
      "variety of mechanisms", 
      "drugs", 
      "delivery", 
      "specific subset", 
      "prospects", 
      "mechanism", 
      "variety", 
      "immunotoxin", 
      "recent literature", 
      "means", 
      "vicinity", 
      "system", 
      "cells", 
      "types", 
      "example", 
      "comparison", 
      "design", 
      "subset", 
      "rationale", 
      "body", 
      "literature", 
      "future", 
      "article"
    ], 
    "name": "Polymer conjugates with anticancer activity", 
    "pagination": "55-123", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050656671"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3540587888_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3540587888_14", 
      "https://app.dimensions.ai/details/publication/pub.1050656671"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_299.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3540587888_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3540587888_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3540587888_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3540587888_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3540587888_14'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      22 PREDICATES      79 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3540587888_14 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 anzsrc-for:09
4 anzsrc-for:0903
5 schema:author N350b7760b97b4a06bc7359bb7815be63
6 schema:datePublished 1995
7 schema:datePublishedReg 1995-01-01
8 schema:description Polymer conjugates may possess anticancer activity through a variety of mechanisms. The macro-molecules themselves may have anticancer activities, or, more typically, inert biocompatible polymers serve as carriers for low molecular weight anticancer agents. Polymer conjugates may also be targeted to increase the concentration of conjugate in the vicinity of a specific subset of cells. This article reviews the recent literature that pertains to polymer conjugates with anticancer activity. The types of polymers chosen as drug carriers and the biodistribution of polymers in the body are discussed. Also, the synthesis, biological properties, and the means used to evaluate the anticancer activities of polymer conjugates are detailed.The rationale for the design of targetable water soluble synthetic polymeric carriers of anticancer drug are explained using copolymers of N-(2-hydroxypropyl)methacrylamide as examples. Comparison of polymer conjugates with other drug delivery systems, i.e., liposomes, nanoparticles, microspheres and immunotoxins, is provided along with the prospects for the future of anticancer drug delivery.
9 schema:editor N283a85a155d54916a0a4051e355af86a
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf N00e1aa5e74b540f7ae6f5cf184a29021
13 schema:keywords activity
14 agents
15 anticancer activity
16 anticancer agents
17 anticancer drug delivery
18 anticancer drugs
19 article
20 biocompatible polymers
21 biodistribution
22 biological properties
23 body
24 carriers
25 cells
26 comparison
27 concentration
28 concentration of conjugates
29 conjugates
30 copolymers
31 delivery
32 delivery system
33 design
34 drug carriers
35 drug delivery
36 drug delivery systems
37 drugs
38 example
39 future
40 immunotoxin
41 liposomes
42 literature
43 means
44 mechanism
45 microspheres
46 nanoparticles
47 polymer conjugates
48 polymeric carriers
49 polymers
50 properties
51 prospects
52 rationale
53 recent literature
54 specific subset
55 subset
56 synthesis
57 synthetic polymeric carriers
58 system
59 types
60 types of polymers
61 variety
62 variety of mechanisms
63 vicinity
64 weight anticancer agents
65 schema:name Polymer conjugates with anticancer activity
66 schema:pagination 55-123
67 schema:productId N7966a5a8cece4dd49db05777bcf2def1
68 Neeeceb7e2bc747b8bf94a10add409b9f
69 schema:publisher N2385bc64e7224675bf9ccdc7ac10addc
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050656671
71 https://doi.org/10.1007/3540587888_14
72 schema:sdDatePublished 2022-09-02T16:13
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nf161109b15e5476d8e44bcc6af5ae171
75 schema:url https://doi.org/10.1007/3540587888_14
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N00e1aa5e74b540f7ae6f5cf184a29021 schema:isbn 978-3-540-49102-6
80 978-3-540-58788-0
81 schema:name Biopolymers II
82 rdf:type schema:Book
83 N2385bc64e7224675bf9ccdc7ac10addc schema:name Springer Nature
84 rdf:type schema:Organisation
85 N283a85a155d54916a0a4051e355af86a rdf:first Nbb69b1f8954d48e3be590d50dda9c5f4
86 rdf:rest Nec5bb3ed74ad43209fea4db342ffb2b8
87 N350b7760b97b4a06bc7359bb7815be63 rdf:first sg:person.01262733306.56
88 rdf:rest N8821c28b79f64dec9734f3966e6710fa
89 N7966a5a8cece4dd49db05777bcf2def1 schema:name doi
90 schema:value 10.1007/3540587888_14
91 rdf:type schema:PropertyValue
92 N7be00cf65fd749fb84b3a6da15e84d49 schema:familyName Langer
93 schema:givenName Robert S.
94 rdf:type schema:Person
95 N8821c28b79f64dec9734f3966e6710fa rdf:first sg:person.013234744657.26
96 rdf:rest rdf:nil
97 Nbb69b1f8954d48e3be590d50dda9c5f4 schema:familyName Peppas
98 schema:givenName Nicholas A.
99 rdf:type schema:Person
100 Nec5bb3ed74ad43209fea4db342ffb2b8 rdf:first N7be00cf65fd749fb84b3a6da15e84d49
101 rdf:rest rdf:nil
102 Neeeceb7e2bc747b8bf94a10add409b9f schema:name dimensions_id
103 schema:value pub.1050656671
104 rdf:type schema:PropertyValue
105 Nf161109b15e5476d8e44bcc6af5ae171 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
108 schema:name Chemical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
111 schema:name Macromolecular and Materials Chemistry
112 rdf:type schema:DefinedTerm
113 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
114 schema:name Engineering
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biomedical Engineering
118 rdf:type schema:DefinedTerm
119 sg:person.01262733306.56 schema:affiliation grid-institutes:grid.223827.e
120 schema:familyName Putnam
121 schema:givenName D.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262733306.56
123 rdf:type schema:Person
124 sg:person.013234744657.26 schema:affiliation grid-institutes:grid.223827.e
125 schema:familyName Kopeček
126 schema:givenName J.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013234744657.26
128 rdf:type schema:Person
129 grid-institutes:grid.223827.e schema:alternateName Departments of Pharmaceutics and Pharmaceutical Chemistry/CCCD, and of Bioengineering, University of Utah, 84112, Salt Lake City, Utah, USA
130 schema:name Departments of Pharmaceutics and Pharmaceutical Chemistry/CCCD, and of Bioengineering, University of Utah, 84112, Salt Lake City, Utah, USA
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...