Boundary Nevanlinna—Pick Interpolation Problems for Generalized Schur Functions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Vladimir Bolotnikov , Alexander Kheifets

ABSTRACT

Three boundary multipoint Nevanlinna-Pick interpolation problems are formulated for generalized Schur functions. For each problem, the set of all solutions is parametrized in terms of a linear fractional transformation with a Schur class parameter.

PAGES

67-119

Book

TITLE

Interpolation, Schur Functions and Moment Problems

ISBN

3-7643-7546-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-7643-7547-7_3

DOI

http://dx.doi.org/10.1007/3-7643-7547-7_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030149691


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, Williamsburg, VA\u00a023187-8795, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Lowell", 
          "id": "https://www.grid.ac/institutes/grid.225262.3", 
          "name": [
            "Department of Mathematics, University of Massachusetts Lowell, Lowell, MA\u00a001854, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kheifets", 
        "givenName": "Alexander", 
        "id": "sg:person.013174220357.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174220357.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00020-003-1220-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003813268", 
          "https://doi.org/10.1007/s00020-003-1220-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01195006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005189177", 
          "https://doi.org/10.1007/bf01195006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01195006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005189177", 
          "https://doi.org/10.1007/bf01195006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02819451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029019252", 
          "https://doi.org/10.1007/bf02819451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02819451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029019252", 
          "https://doi.org/10.1007/bf02819451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1984.1056925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061649047"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "Three boundary multipoint Nevanlinna-Pick interpolation problems are formulated for generalized Schur functions. For each problem, the set of all solutions is parametrized in terms of a linear fractional transformation with a Schur class parameter.", 
    "editor": [
      {
        "familyName": "Alpay", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "Gohberg", 
        "givenName": "Israel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-7643-7547-7_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "3-7643-7546-9"
      ], 
      "name": "Interpolation, Schur Functions and Moment Problems", 
      "type": "Book"
    }, 
    "name": "Boundary Nevanlinna\u2014Pick Interpolation Problems for Generalized Schur Functions", 
    "pagination": "67-119", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-7643-7547-7_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8fa146ed1b689f11313e486b300a7414b4e9674d037c163a4ea12a80bc76d3c2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030149691"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-7643-7547-7_3", 
      "https://app.dimensions.ai/details/publication/pub.1030149691"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000261.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-7643-7547-7_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7547-7_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7547-7_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7547-7_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7547-7_3'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      22 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-7643-7547-7_3 schema:author Nd8a3706eb9c8443ea350f43971e8692b
2 schema:citation sg:pub.10.1007/bf01195006
3 sg:pub.10.1007/bf01238220
4 sg:pub.10.1007/bf01691925
5 sg:pub.10.1007/bf02819451
6 sg:pub.10.1007/s00020-003-1220-5
7 https://doi.org/10.1109/tit.1984.1056925
8 schema:datePublished 2006
9 schema:datePublishedReg 2006-01-01
10 schema:description Three boundary multipoint Nevanlinna-Pick interpolation problems are formulated for generalized Schur functions. For each problem, the set of all solutions is parametrized in terms of a linear fractional transformation with a Schur class parameter.
11 schema:editor N705d345a093d4e888dc79d5efb74b4da
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N7097fff4f5004ca593cd273b781b32bd
16 schema:name Boundary Nevanlinna—Pick Interpolation Problems for Generalized Schur Functions
17 schema:pagination 67-119
18 schema:productId N2b6574c9b22a47a18a9a68a1eec87a9e
19 N7588a38c76154d4d90cfd69285587bc0
20 N85e2ab6467954b0188c6b28e6fdce52d
21 schema:publisher N54d3b6636dad4615bbec4577731f6569
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030149691
23 https://doi.org/10.1007/3-7643-7547-7_3
24 schema:sdDatePublished 2019-04-15T16:17
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N146b32399a6148fc931cd0b555662979
27 schema:url http://link.springer.com/10.1007/3-7643-7547-7_3
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N146b32399a6148fc931cd0b555662979 schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N2b6574c9b22a47a18a9a68a1eec87a9e schema:name dimensions_id
34 schema:value pub.1030149691
35 rdf:type schema:PropertyValue
36 N54d3b6636dad4615bbec4577731f6569 schema:location Basel
37 schema:name Birkhäuser-Verlag
38 rdf:type schema:Organisation
39 N54f930fa47254256bc1e7a148cdb6148 schema:familyName Alpay
40 schema:givenName Daniel
41 rdf:type schema:Person
42 N705d345a093d4e888dc79d5efb74b4da rdf:first N54f930fa47254256bc1e7a148cdb6148
43 rdf:rest Nb7e26dd82c4c41a784200fba564000fb
44 N7097fff4f5004ca593cd273b781b32bd schema:isbn 3-7643-7546-9
45 schema:name Interpolation, Schur Functions and Moment Problems
46 rdf:type schema:Book
47 N7588a38c76154d4d90cfd69285587bc0 schema:name doi
48 schema:value 10.1007/3-7643-7547-7_3
49 rdf:type schema:PropertyValue
50 N85e2ab6467954b0188c6b28e6fdce52d schema:name readcube_id
51 schema:value 8fa146ed1b689f11313e486b300a7414b4e9674d037c163a4ea12a80bc76d3c2
52 rdf:type schema:PropertyValue
53 Na6e461cac4e643528f1a682268afac93 rdf:first sg:person.013174220357.75
54 rdf:rest rdf:nil
55 Nb7e26dd82c4c41a784200fba564000fb rdf:first Neb521d855e7247f28a0159d020f58843
56 rdf:rest rdf:nil
57 Nd8a3706eb9c8443ea350f43971e8692b rdf:first sg:person.01130533744.43
58 rdf:rest Na6e461cac4e643528f1a682268afac93
59 Neb521d855e7247f28a0159d020f58843 schema:familyName Gohberg
60 schema:givenName Israel
61 rdf:type schema:Person
62 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
63 schema:familyName Bolotnikov
64 schema:givenName Vladimir
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
66 rdf:type schema:Person
67 sg:person.013174220357.75 schema:affiliation https://www.grid.ac/institutes/grid.225262.3
68 schema:familyName Kheifets
69 schema:givenName Alexander
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174220357.75
71 rdf:type schema:Person
72 sg:pub.10.1007/bf01195006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005189177
73 https://doi.org/10.1007/bf01195006
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01238220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033101609
76 https://doi.org/10.1007/bf01238220
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01691925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019968975
79 https://doi.org/10.1007/bf01691925
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf02819451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029019252
82 https://doi.org/10.1007/bf02819451
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s00020-003-1220-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003813268
85 https://doi.org/10.1007/s00020-003-1220-5
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1109/tit.1984.1056925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649047
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.225262.3 schema:alternateName University of Massachusetts Lowell
90 schema:name Department of Mathematics, University of Massachusetts Lowell, Lowell, MA 01854, USA
91 rdf:type schema:Organization
92 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
93 schema:name Department of Mathematics, The College of William and Mary, Williamsburg, VA 23187-8795, USA
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...