Basic Boundary Interpolation for Generalized Schur Functions and Factorization of Rational J-unitary Matrix Functions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Daniel Alpay , Aad Dijksma , Heinz Langer , Gerald Wanjala

ABSTRACT

We define and solve a boundary interpolation problem for generalized Schur functions s(z) on the open unit disk \( \mathbb{D}\) which have preassigned asymptotics when z from \( \mathbb{D}\) tends nontangentially to a boundary point z 1 ∈ \( \mathbb{T}\). The solutions are characterized via a fractional linear parametrization formula. We also prove that a rational J-unitary 2 × 2-matrix function whose only pole is at z 1 has a unique minimal factorization into elementary factors and we classify these factors. The parametrization formula is then used in an algorithm for obtaining this factorization. In the proofs we use reproducing kernel space methods. More... »

PAGES

1-29

References to SciGraph publications

Book

TITLE

Interpolation, Schur Functions and Moment Problems

ISBN

3-7643-7546-9

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-7643-7547-7_1

DOI

http://dx.doi.org/10.1007/3-7643-7547-7_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002676549


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "Daniel", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, NL-9700 AV\u00a0Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute of Analysis and Computational Mathematics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mbarara University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.33440.30", 
          "name": [
            "Department of Mathematics, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wanjala", 
        "givenName": "Gerald", 
        "id": "sg:person.012754335703.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012754335703.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01204261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001047275", 
          "https://doi.org/10.1007/bf01204261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(75)90093-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011894065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2004.02.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031956638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(78)90064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035417758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2003.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037191330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01200325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039094925", 
          "https://doi.org/10.1007/bf01200325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(02)00734-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049556885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(02)00734-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049556885"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "We define and solve a boundary interpolation problem for generalized Schur functions s(z) on the open unit disk \\( \\mathbb{D}\\) which have preassigned asymptotics when z from \\( \\mathbb{D}\\) tends nontangentially to a boundary point z 1 \u2208 \\( \\mathbb{T}\\). The solutions are characterized via a fractional linear parametrization formula. We also prove that a rational J-unitary 2 \u00d7 2-matrix function whose only pole is at z 1 has a unique minimal factorization into elementary factors and we classify these factors. The parametrization formula is then used in an algorithm for obtaining this factorization. In the proofs we use reproducing kernel space methods.", 
    "editor": [
      {
        "familyName": "Alpay", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "Gohberg", 
        "givenName": "Israel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-7643-7547-7_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4109448", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "3-7643-7546-9"
      ], 
      "name": "Interpolation, Schur Functions and Moment Problems", 
      "type": "Book"
    }, 
    "name": "Basic Boundary Interpolation for Generalized Schur Functions and Factorization of Rational J-unitary Matrix Functions", 
    "pagination": "1-29", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-7643-7547-7_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0cbe7d85cb730b93086dd465370e2468c1319cef03ef27f2f62edc6cab92fb88"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002676549"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-7643-7547-7_1", 
      "https://app.dimensions.ai/details/publication/pub.1002676549"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000244.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-7643-7547-7_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7547-7_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7547-7_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7547-7_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7547-7_1'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-7643-7547-7_1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na42eed19e688406da53b89879d342af5
4 schema:citation sg:pub.10.1007/bf01200325
5 sg:pub.10.1007/bf01204261
6 sg:pub.10.1007/bf01238220
7 sg:pub.10.1007/bf01691925
8 https://doi.org/10.1016/0022-1236(78)90064-2
9 https://doi.org/10.1016/0022-247x(75)90093-1
10 https://doi.org/10.1016/j.laa.2003.11.003
11 https://doi.org/10.1016/j.laa.2004.02.037
12 https://doi.org/10.1016/s0024-3795(02)00734-6
13 schema:datePublished 2006
14 schema:datePublishedReg 2006-01-01
15 schema:description We define and solve a boundary interpolation problem for generalized Schur functions s(z) on the open unit disk \( \mathbb{D}\) which have preassigned asymptotics when z from \( \mathbb{D}\) tends nontangentially to a boundary point z 1 ∈ \( \mathbb{T}\). The solutions are characterized via a fractional linear parametrization formula. We also prove that a rational J-unitary 2 × 2-matrix function whose only pole is at z 1 has a unique minimal factorization into elementary factors and we classify these factors. The parametrization formula is then used in an algorithm for obtaining this factorization. In the proofs we use reproducing kernel space methods.
16 schema:editor N660614c33997441f873a2aeb3b914c68
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N1dc9c075d15d4925bccb9b91d22b0c57
21 schema:name Basic Boundary Interpolation for Generalized Schur Functions and Factorization of Rational J-unitary Matrix Functions
22 schema:pagination 1-29
23 schema:productId N32dcb2720aba4e038ed503361021bed0
24 N3f7eb2456a1e451ca719aaac308a9951
25 N875a45911d134812b1c9ce909fc94493
26 schema:publisher Nf297bae61dbe475d922fa764be95680e
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002676549
28 https://doi.org/10.1007/3-7643-7547-7_1
29 schema:sdDatePublished 2019-04-15T16:14
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N602b1c1e4b5b4561845ace12e2da2132
32 schema:url http://link.springer.com/10.1007/3-7643-7547-7_1
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N18ec59fd25714a6fbca0449a1ad64af0 rdf:first Necdcd1283f6f4919be1405900c95de7b
37 rdf:rest rdf:nil
38 N1dc9c075d15d4925bccb9b91d22b0c57 schema:isbn 3-7643-7546-9
39 schema:name Interpolation, Schur Functions and Moment Problems
40 rdf:type schema:Book
41 N2f5638ba91af4d7fa17803c7b41be3d7 rdf:first sg:person.012754335703.52
42 rdf:rest rdf:nil
43 N32dcb2720aba4e038ed503361021bed0 schema:name doi
44 schema:value 10.1007/3-7643-7547-7_1
45 rdf:type schema:PropertyValue
46 N3f7eb2456a1e451ca719aaac308a9951 schema:name dimensions_id
47 schema:value pub.1002676549
48 rdf:type schema:PropertyValue
49 N602b1c1e4b5b4561845ace12e2da2132 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N660614c33997441f873a2aeb3b914c68 rdf:first Na9be38a346544330a5a6dd3dc7f29696
52 rdf:rest N18ec59fd25714a6fbca0449a1ad64af0
53 N875a45911d134812b1c9ce909fc94493 schema:name readcube_id
54 schema:value 0cbe7d85cb730b93086dd465370e2468c1319cef03ef27f2f62edc6cab92fb88
55 rdf:type schema:PropertyValue
56 Na42eed19e688406da53b89879d342af5 rdf:first sg:person.011517101346.40
57 rdf:rest Nfc69bd03210a4c78b096ce1c134a42e7
58 Na9be38a346544330a5a6dd3dc7f29696 schema:familyName Alpay
59 schema:givenName Daniel
60 rdf:type schema:Person
61 Nb3f0c909d648426f98c095e17dd387b2 rdf:first sg:person.07450173411.71
62 rdf:rest N2f5638ba91af4d7fa17803c7b41be3d7
63 Necdcd1283f6f4919be1405900c95de7b schema:familyName Gohberg
64 schema:givenName Israel
65 rdf:type schema:Person
66 Nf297bae61dbe475d922fa764be95680e schema:location Basel
67 schema:name Birkhäuser-Verlag
68 rdf:type schema:Organisation
69 Nfc69bd03210a4c78b096ce1c134a42e7 rdf:first sg:person.013762723211.39
70 rdf:rest Nb3f0c909d648426f98c095e17dd387b2
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
75 schema:name Pure Mathematics
76 rdf:type schema:DefinedTerm
77 sg:grant.4109448 http://pending.schema.org/fundedItem sg:pub.10.1007/3-7643-7547-7_1
78 rdf:type schema:MonetaryGrant
79 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
80 schema:familyName Alpay
81 schema:givenName Daniel
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
83 rdf:type schema:Person
84 sg:person.012754335703.52 schema:affiliation https://www.grid.ac/institutes/grid.33440.30
85 schema:familyName Wanjala
86 schema:givenName Gerald
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012754335703.52
88 rdf:type schema:Person
89 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
90 schema:familyName Dijksma
91 schema:givenName Aad
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
93 rdf:type schema:Person
94 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
95 schema:familyName Langer
96 schema:givenName Heinz
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
98 rdf:type schema:Person
99 sg:pub.10.1007/bf01200325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039094925
100 https://doi.org/10.1007/bf01200325
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01204261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001047275
103 https://doi.org/10.1007/bf01204261
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf01238220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033101609
106 https://doi.org/10.1007/bf01238220
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01691925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019968975
109 https://doi.org/10.1007/bf01691925
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0022-1236(78)90064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035417758
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0022-247x(75)90093-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011894065
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.laa.2003.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037191330
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.laa.2004.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031956638
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0024-3795(02)00734-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049556885
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.33440.30 schema:alternateName Mbarara University of Science and Technology
122 schema:name Department of Mathematics, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
123 rdf:type schema:Organization
124 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
125 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, NL-9700 AV Groningen, The Netherlands
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
128 schema:name Institute of Analysis and Computational Mathematics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
131 schema:name Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...