Minimal Models for $$ \mathcal{N}_\kappa ^\infty $$ -functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Aad Dijksma , Annemarie Luger , Yuri Shondin

ABSTRACT

We present explicit realizations in terms of self-adjoint operators and linear relations for a non-zero scalar generalized Nevanlinna function N(z) and the function \( \hat N \) (z) = −1/N(z) under the assumption that \( \hat N \) (z) has exactly one generalized pole which is not of positive type namely at z = ∞. The key tool we use to obtain these models is reproducing kernel Pontryagin spaces. More... »

PAGES

97-134

Book

TITLE

Operator Theory and Indefinite Inner Product Spaces

ISBN

3-7643-7515-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-7643-7516-7_5

DOI

http://dx.doi.org/10.1007/3-7643-7516-7_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028386729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV\u00a0Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luger", 
        "givenName": "Annemarie", 
        "id": "sg:person.011442625430.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of theoretical Physics, State Pedagogical University, Str. Ulyanova 1, Nizhny Novgorod, 603950, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shondin", 
        "givenName": "Yuri", 
        "id": "sg:person.015771172577.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jdeq.1999.3755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002159253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017222504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017222504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2003.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020692391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19670470822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026905492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028982361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/28/4/031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030496400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2004.02.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031956638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-03-06946-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032772125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mpag.0000007189.09453.fc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043770924", 
          "https://doi.org/10.1023/b:mpag.0000007189.09453.fc"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01236290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049778602", 
          "https://doi.org/10.1007/bf01236290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01236290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049778602", 
          "https://doi.org/10.1007/bf01236290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.529404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058106419"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "We present explicit realizations in terms of self-adjoint operators and linear relations for a non-zero scalar generalized Nevanlinna function N(z) and the function \\( \\hat N \\) (z) = \u22121/N(z) under the assumption that \\( \\hat N \\) (z) has exactly one generalized pole which is not of positive type namely at z = \u221e. The key tool we use to obtain these models is reproducing kernel Pontryagin spaces.", 
    "editor": [
      {
        "familyName": "Langer", 
        "givenName": "Matthias", 
        "type": "Person"
      }, 
      {
        "familyName": "Luger", 
        "givenName": "Annemarie", 
        "type": "Person"
      }, 
      {
        "familyName": "Woracek", 
        "givenName": "Harald", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-7643-7516-7_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6195325", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3747813", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "3-7643-7515-9"
      ], 
      "name": "Operator Theory and Indefinite Inner Product Spaces", 
      "type": "Book"
    }, 
    "name": "Minimal Models for $$ \\mathcal{N}_\\kappa ^\\infty $$ -functions", 
    "pagination": "97-134", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-7643-7516-7_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "873a93c9793ad20191715ce1b91eadd9db16f90e34a08fc3e1c312cd6b0c1ca9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028386729"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-7643-7516-7_5", 
      "https://app.dimensions.ai/details/publication/pub.1028386729"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000260.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-7643-7516-7_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7516-7_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7516-7_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7516-7_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7516-7_5'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-7643-7516-7_5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N44f768d8bc69466c907f3b334bd7e0f1
4 schema:citation sg:pub.10.1007/bf01236290
5 sg:pub.10.1023/b:mpag.0000007189.09453.fc
6 https://doi.org/10.1002/zamm.19670470822
7 https://doi.org/10.1006/jdeq.1999.3755
8 https://doi.org/10.1006/jfan.1995.1030
9 https://doi.org/10.1016/j.jfa.2003.06.005
10 https://doi.org/10.1016/j.laa.2004.02.037
11 https://doi.org/10.1016/s0022-1236(03)00068-5
12 https://doi.org/10.1063/1.529404
13 https://doi.org/10.1088/0305-4470/28/4/031
14 https://doi.org/10.1090/s0002-9939-03-06946-6
15 schema:datePublished 2006
16 schema:datePublishedReg 2006-01-01
17 schema:description We present explicit realizations in terms of self-adjoint operators and linear relations for a non-zero scalar generalized Nevanlinna function N(z) and the function \( \hat N \) (z) = −1/N(z) under the assumption that \( \hat N \) (z) has exactly one generalized pole which is not of positive type namely at z = ∞. The key tool we use to obtain these models is reproducing kernel Pontryagin spaces.
18 schema:editor N585e3940661448e5a98c0dd8d7fa31cb
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N41063af7f3ec40749523140b5ccd9e5a
23 schema:name Minimal Models for $$ \mathcal{N}_\kappa ^\infty $$ -functions
24 schema:pagination 97-134
25 schema:productId N3f81913af54147168eb21a8ca864a7c9
26 N46787d11075b4c57913e1ddf1bd447cc
27 N48f028e23d62482785d446f6ce429b55
28 schema:publisher N74b63d52388240528e0570431c17b589
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028386729
30 https://doi.org/10.1007/3-7643-7516-7_5
31 schema:sdDatePublished 2019-04-15T10:34
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N8518f1b027dd416c8ddf3f037a274e40
34 schema:url http://link.springer.com/10.1007/3-7643-7516-7_5
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N0011adea6c5c4987ac08ab3370a90aef schema:familyName Woracek
39 schema:givenName Harald
40 rdf:type schema:Person
41 N00a6c4eeddd4420db743f6777ec0169b rdf:first N0011adea6c5c4987ac08ab3370a90aef
42 rdf:rest rdf:nil
43 N2a4ee316caa24770abfb24665e97dc25 rdf:first sg:person.011442625430.95
44 rdf:rest Nd39cc89cd93345348fab993f8f422617
45 N3f81913af54147168eb21a8ca864a7c9 schema:name doi
46 schema:value 10.1007/3-7643-7516-7_5
47 rdf:type schema:PropertyValue
48 N41063af7f3ec40749523140b5ccd9e5a schema:isbn 3-7643-7515-9
49 schema:name Operator Theory and Indefinite Inner Product Spaces
50 rdf:type schema:Book
51 N44f768d8bc69466c907f3b334bd7e0f1 rdf:first sg:person.013762723211.39
52 rdf:rest N2a4ee316caa24770abfb24665e97dc25
53 N46787d11075b4c57913e1ddf1bd447cc schema:name dimensions_id
54 schema:value pub.1028386729
55 rdf:type schema:PropertyValue
56 N48f028e23d62482785d446f6ce429b55 schema:name readcube_id
57 schema:value 873a93c9793ad20191715ce1b91eadd9db16f90e34a08fc3e1c312cd6b0c1ca9
58 rdf:type schema:PropertyValue
59 N585e3940661448e5a98c0dd8d7fa31cb rdf:first Nca8bf9a76a47494a8bb57d447255f457
60 rdf:rest N900b0245973442e492a10840b399d798
61 N74b63d52388240528e0570431c17b589 schema:location Basel
62 schema:name Birkhäuser-Verlag
63 rdf:type schema:Organisation
64 N8518f1b027dd416c8ddf3f037a274e40 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N900b0245973442e492a10840b399d798 rdf:first Nd1c1bf5c166f480b9ae1622f495dfe52
67 rdf:rest N00a6c4eeddd4420db743f6777ec0169b
68 Nca8bf9a76a47494a8bb57d447255f457 schema:familyName Langer
69 schema:givenName Matthias
70 rdf:type schema:Person
71 Nd1c1bf5c166f480b9ae1622f495dfe52 schema:familyName Luger
72 schema:givenName Annemarie
73 rdf:type schema:Person
74 Nd39cc89cd93345348fab993f8f422617 rdf:first sg:person.015771172577.94
75 rdf:rest rdf:nil
76 Nf3cfa7205cd54c33a6f6e745448f503f schema:name Department of theoretical Physics, State Pedagogical University, Str. Ulyanova 1, Nizhny Novgorod, 603950, Russia
77 rdf:type schema:Organization
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
82 schema:name Pure Mathematics
83 rdf:type schema:DefinedTerm
84 sg:grant.3747813 http://pending.schema.org/fundedItem sg:pub.10.1007/3-7643-7516-7_5
85 rdf:type schema:MonetaryGrant
86 sg:grant.6195325 http://pending.schema.org/fundedItem sg:pub.10.1007/3-7643-7516-7_5
87 rdf:type schema:MonetaryGrant
88 sg:person.011442625430.95 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
89 schema:familyName Luger
90 schema:givenName Annemarie
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95
92 rdf:type schema:Person
93 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
94 schema:familyName Dijksma
95 schema:givenName Aad
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
97 rdf:type schema:Person
98 sg:person.015771172577.94 schema:affiliation Nf3cfa7205cd54c33a6f6e745448f503f
99 schema:familyName Shondin
100 schema:givenName Yuri
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94
102 rdf:type schema:Person
103 sg:pub.10.1007/bf01236290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049778602
104 https://doi.org/10.1007/bf01236290
105 rdf:type schema:CreativeWork
106 sg:pub.10.1023/b:mpag.0000007189.09453.fc schema:sameAs https://app.dimensions.ai/details/publication/pub.1043770924
107 https://doi.org/10.1023/b:mpag.0000007189.09453.fc
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/zamm.19670470822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026905492
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1006/jdeq.1999.3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159253
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1006/jfan.1995.1030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028982361
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jfa.2003.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020692391
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.laa.2004.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031956638
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0022-1236(03)00068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017222504
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.529404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058106419
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/0305-4470/28/4/031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030496400
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1090/s0002-9939-03-06946-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032772125
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
128 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
131 schema:name Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...