Minimal Models for $$ \mathcal{N}_\kappa ^\infty $$ -functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

Aad Dijksma , Annemarie Luger , Yuri Shondin

ABSTRACT

We present explicit realizations in terms of self-adjoint operators and linear relations for a non-zero scalar generalized Nevanlinna function N(z) and the function \( \hat N \) (z) = −1/N(z) under the assumption that \( \hat N \) (z) has exactly one generalized pole which is not of positive type namely at z = ∞. The key tool we use to obtain these models is reproducing kernel Pontryagin spaces. More... »

PAGES

97-134

Book

TITLE

Operator Theory and Indefinite Inner Product Spaces

ISBN

3-7643-7515-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-7643-7516-7_5

DOI

http://dx.doi.org/10.1007/3-7643-7516-7_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028386729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV\u00a0Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luger", 
        "givenName": "Annemarie", 
        "id": "sg:person.011442625430.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of theoretical Physics, State Pedagogical University, Str. Ulyanova 1, Nizhny Novgorod, 603950, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shondin", 
        "givenName": "Yuri", 
        "id": "sg:person.015771172577.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jdeq.1999.3755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002159253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017222504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017222504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2003.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020692391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19670470822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026905492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028982361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/28/4/031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030496400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2004.02.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031956638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-03-06946-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032772125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mpag.0000007189.09453.fc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043770924", 
          "https://doi.org/10.1023/b:mpag.0000007189.09453.fc"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01236290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049778602", 
          "https://doi.org/10.1007/bf01236290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01236290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049778602", 
          "https://doi.org/10.1007/bf01236290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.529404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058106419"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "We present explicit realizations in terms of self-adjoint operators and linear relations for a non-zero scalar generalized Nevanlinna function N(z) and the function \\( \\hat N \\) (z) = \u22121/N(z) under the assumption that \\( \\hat N \\) (z) has exactly one generalized pole which is not of positive type namely at z = \u221e. The key tool we use to obtain these models is reproducing kernel Pontryagin spaces.", 
    "editor": [
      {
        "familyName": "Langer", 
        "givenName": "Matthias", 
        "type": "Person"
      }, 
      {
        "familyName": "Luger", 
        "givenName": "Annemarie", 
        "type": "Person"
      }, 
      {
        "familyName": "Woracek", 
        "givenName": "Harald", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-7643-7516-7_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6195325", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3747813", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "3-7643-7515-9"
      ], 
      "name": "Operator Theory and Indefinite Inner Product Spaces", 
      "type": "Book"
    }, 
    "name": "Minimal Models for $$ \\mathcal{N}_\\kappa ^\\infty $$ -functions", 
    "pagination": "97-134", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-7643-7516-7_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "873a93c9793ad20191715ce1b91eadd9db16f90e34a08fc3e1c312cd6b0c1ca9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028386729"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-7643-7516-7_5", 
      "https://app.dimensions.ai/details/publication/pub.1028386729"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000260.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-7643-7516-7_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7516-7_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7516-7_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7516-7_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7516-7_5'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-7643-7516-7_5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6a2db53e66ee4fe09da4d72bb4d43b13
4 schema:citation sg:pub.10.1007/bf01236290
5 sg:pub.10.1023/b:mpag.0000007189.09453.fc
6 https://doi.org/10.1002/zamm.19670470822
7 https://doi.org/10.1006/jdeq.1999.3755
8 https://doi.org/10.1006/jfan.1995.1030
9 https://doi.org/10.1016/j.jfa.2003.06.005
10 https://doi.org/10.1016/j.laa.2004.02.037
11 https://doi.org/10.1016/s0022-1236(03)00068-5
12 https://doi.org/10.1063/1.529404
13 https://doi.org/10.1088/0305-4470/28/4/031
14 https://doi.org/10.1090/s0002-9939-03-06946-6
15 schema:datePublished 2006
16 schema:datePublishedReg 2006-01-01
17 schema:description We present explicit realizations in terms of self-adjoint operators and linear relations for a non-zero scalar generalized Nevanlinna function N(z) and the function \( \hat N \) (z) = −1/N(z) under the assumption that \( \hat N \) (z) has exactly one generalized pole which is not of positive type namely at z = ∞. The key tool we use to obtain these models is reproducing kernel Pontryagin spaces.
18 schema:editor N1eb558d5cec641db9c0e9a4e190fe0c3
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N202ee9e1d5524b3692275e44539eb407
23 schema:name Minimal Models for $$ \mathcal{N}_\kappa ^\infty $$ -functions
24 schema:pagination 97-134
25 schema:productId N1ca9076b9f774be9a6722feedaaf22ae
26 N9b9a6026471b4b0e9b4ad0723a3a44f4
27 Nb2c06011a752431eb754d882019622bd
28 schema:publisher N71983ee80a4f40489f633a1e4ae23eb6
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028386729
30 https://doi.org/10.1007/3-7643-7516-7_5
31 schema:sdDatePublished 2019-04-15T10:34
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Ne7992b279077400189329b865b62df1e
34 schema:url http://link.springer.com/10.1007/3-7643-7516-7_5
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N0a21e16874d040d4afb72ee8a6b49af5 rdf:first Ne33add3c26894ccc9d57891f38f9ad80
39 rdf:rest N90b5583dceee4a4c94d8c18b4ed7d904
40 N14f42a4db4794d5e8918e6ed4e5d7030 schema:familyName Langer
41 schema:givenName Matthias
42 rdf:type schema:Person
43 N1ca9076b9f774be9a6722feedaaf22ae schema:name dimensions_id
44 schema:value pub.1028386729
45 rdf:type schema:PropertyValue
46 N1eb558d5cec641db9c0e9a4e190fe0c3 rdf:first N14f42a4db4794d5e8918e6ed4e5d7030
47 rdf:rest N0a21e16874d040d4afb72ee8a6b49af5
48 N202ee9e1d5524b3692275e44539eb407 schema:isbn 3-7643-7515-9
49 schema:name Operator Theory and Indefinite Inner Product Spaces
50 rdf:type schema:Book
51 N35bc9cdc651b459c878503d605e75bd6 schema:name Department of theoretical Physics, State Pedagogical University, Str. Ulyanova 1, Nizhny Novgorod, 603950, Russia
52 rdf:type schema:Organization
53 N6a2db53e66ee4fe09da4d72bb4d43b13 rdf:first sg:person.013762723211.39
54 rdf:rest N98e80806cc3d43e7a198d6d15cd51ea8
55 N71983ee80a4f40489f633a1e4ae23eb6 schema:location Basel
56 schema:name Birkhäuser-Verlag
57 rdf:type schema:Organisation
58 N88566f8095e54f9a933e0dc41632af33 schema:familyName Woracek
59 schema:givenName Harald
60 rdf:type schema:Person
61 N90b5583dceee4a4c94d8c18b4ed7d904 rdf:first N88566f8095e54f9a933e0dc41632af33
62 rdf:rest rdf:nil
63 N98e80806cc3d43e7a198d6d15cd51ea8 rdf:first sg:person.011442625430.95
64 rdf:rest Ndae4241bbeb64415a8f83e77b5142663
65 N9b9a6026471b4b0e9b4ad0723a3a44f4 schema:name doi
66 schema:value 10.1007/3-7643-7516-7_5
67 rdf:type schema:PropertyValue
68 Nb2c06011a752431eb754d882019622bd schema:name readcube_id
69 schema:value 873a93c9793ad20191715ce1b91eadd9db16f90e34a08fc3e1c312cd6b0c1ca9
70 rdf:type schema:PropertyValue
71 Ndae4241bbeb64415a8f83e77b5142663 rdf:first sg:person.015771172577.94
72 rdf:rest rdf:nil
73 Ne33add3c26894ccc9d57891f38f9ad80 schema:familyName Luger
74 schema:givenName Annemarie
75 rdf:type schema:Person
76 Ne7992b279077400189329b865b62df1e schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
82 schema:name Pure Mathematics
83 rdf:type schema:DefinedTerm
84 sg:grant.3747813 http://pending.schema.org/fundedItem sg:pub.10.1007/3-7643-7516-7_5
85 rdf:type schema:MonetaryGrant
86 sg:grant.6195325 http://pending.schema.org/fundedItem sg:pub.10.1007/3-7643-7516-7_5
87 rdf:type schema:MonetaryGrant
88 sg:person.011442625430.95 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
89 schema:familyName Luger
90 schema:givenName Annemarie
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95
92 rdf:type schema:Person
93 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
94 schema:familyName Dijksma
95 schema:givenName Aad
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
97 rdf:type schema:Person
98 sg:person.015771172577.94 schema:affiliation N35bc9cdc651b459c878503d605e75bd6
99 schema:familyName Shondin
100 schema:givenName Yuri
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94
102 rdf:type schema:Person
103 sg:pub.10.1007/bf01236290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049778602
104 https://doi.org/10.1007/bf01236290
105 rdf:type schema:CreativeWork
106 sg:pub.10.1023/b:mpag.0000007189.09453.fc schema:sameAs https://app.dimensions.ai/details/publication/pub.1043770924
107 https://doi.org/10.1023/b:mpag.0000007189.09453.fc
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/zamm.19670470822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026905492
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1006/jdeq.1999.3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159253
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1006/jfan.1995.1030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028982361
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jfa.2003.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020692391
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.laa.2004.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031956638
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0022-1236(03)00068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017222504
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.529404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058106419
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/0305-4470/28/4/031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030496400
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1090/s0002-9939-03-06946-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032772125
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
128 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
131 schema:name Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...