Ontology type: schema:Chapter Open Access: True
2006
AUTHORS ABSTRACTEvery Schur function s(z) is the uniform limit of a sequence of finite Blaschke products on compact subsets of the open unit disk. The Blaschke products in the sequence are defined inductively via the Schur parameters of s(z). In this note we prove a similar result for generalized Schur functions.
PAGES135-144
Operator Theory in Krein Spaces and Nonlinear Eigenvalue Problems
ISBN3-7643-7452-7
http://scigraph.springernature.com/pub.10.1007/3-7643-7453-5_8
DOIhttp://dx.doi.org/10.1007/3-7643-7453-5_8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037546927
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"author": [
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV\u00a0Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Dijksma",
"givenName": "Aad",
"id": "sg:person.013762723211.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mbarara University of Science and Technology",
"id": "https://www.grid.ac/institutes/grid.33440.30",
"name": [
"Department of Mathematics, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda"
],
"type": "Organization"
},
"familyName": "Wanjala",
"givenName": "Gerald",
"id": "sg:person.012754335703.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012754335703.52"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00605-002-0528-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034313376",
"https://doi.org/10.1007/s00605-002-0528-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0024-3795(02)00734-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049556885"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0024-3795(02)00734-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049556885"
],
"type": "CreativeWork"
}
],
"datePublished": "2006",
"datePublishedReg": "2006-01-01",
"description": "Every Schur function s(z) is the uniform limit of a sequence of finite Blaschke products on compact subsets of the open unit disk. The Blaschke products in the sequence are defined inductively via the Schur parameters of s(z). In this note we prove a similar result for generalized Schur functions.",
"editor": [
{
"familyName": "F\u00f6rster",
"givenName": "Karl-Heinz",
"type": "Person"
},
{
"familyName": "Jonas",
"givenName": "Peter",
"type": "Person"
},
{
"familyName": "Langer",
"givenName": "Heinz",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/3-7643-7453-5_8",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"3-7643-7452-7"
],
"name": "Operator Theory in Krein Spaces and Nonlinear Eigenvalue Problems",
"type": "Book"
},
"name": "Generalized Schur Functions and Augmented Schur Parameters",
"pagination": "135-144",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/3-7643-7453-5_8"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"b2dbd82f0f8bed91365c97d8ebb10b688354d9042f9eb2c91d3fbc260fd186ce"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037546927"
]
}
],
"publisher": {
"location": "Basel",
"name": "Birkh\u00e4user-Verlag",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/3-7643-7453-5_8",
"https://app.dimensions.ai/details/publication/pub.1037546927"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T21:03",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000266.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/3-7643-7453-5_8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7453-5_8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7453-5_8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7453-5_8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7453-5_8'
This table displays all metadata directly associated to this object as RDF triples.
83 TRIPLES
22 PREDICATES
27 URIs
20 LITERALS
8 BLANK NODES