Fractional Calculus and Symbolic Solution of Fractional Differential Equations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

G. Baumann

ABSTRACT

The aim of this article is to present a practical introduction to fractional calculus. Fractional calculus is an old mathematical subject concerned with fractional derivatives. Fractional derivatives used in this paper are restricted to the Riemann-Liouville type. Based on the Riemann-Liouville calculus, we formulate fractional differential equations. Fractional differential equations are applied to models in relaxation and diffusion problems. Fractional calculus is used to formulate and to solve different physical models allowing a continuous transition from relaxation to oscillation phenomena. An application to an anomalous diffusion process demonstrates that the method used is also useful for more than one independent variable. Based on the theory of fractional derivatives and linear transformation theory, we demonstrate how symbolic calculations on a computer can be used to support practical calculations. The symbolic program FractionalCalculus based on Mathematica is used to demonstrate the solution of fractional differential equations step by step. The key method applied is linear transformation theory in connection with generalized functions. More... »

PAGES

287-298

Book

TITLE

Fractals in Biology and Medicine

ISBN

3-7643-7172-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-7643-7412-8_28

DOI

http://dx.doi.org/10.1007/3-7643-7412-8_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048767704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Mathematical Physics, University of Ulm, Albert-Einstein-Allee 11, D-89069\u00a0Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumann", 
        "givenName": "G.", 
        "id": "sg:person.01247751074.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0378-4371(94)90064-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023267745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(94)90064-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023267745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(00)00070-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042976136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aanat.2006.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046863806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)00055-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047105963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)00055-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047105963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(95)80157-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049177260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.470346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058048328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.527251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058104270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/28/23/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059074635"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "The aim of this article is to present a practical introduction to fractional calculus. Fractional calculus is an old mathematical subject concerned with fractional derivatives. Fractional derivatives used in this paper are restricted to the Riemann-Liouville type. Based on the Riemann-Liouville calculus, we formulate fractional differential equations. Fractional differential equations are applied to models in relaxation and diffusion problems. Fractional calculus is used to formulate and to solve different physical models allowing a continuous transition from relaxation to oscillation phenomena. An application to an anomalous diffusion process demonstrates that the method used is also useful for more than one independent variable. Based on the theory of fractional derivatives and linear transformation theory, we demonstrate how symbolic calculations on a computer can be used to support practical calculations. The symbolic program FractionalCalculus based on Mathematica is used to demonstrate the solution of fractional differential equations step by step. The key method applied is linear transformation theory in connection with generalized functions.", 
    "editor": [
      {
        "familyName": "Losa", 
        "givenName": "Gabriele A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Merlini", 
        "givenName": "Danilo", 
        "type": "Person"
      }, 
      {
        "familyName": "Nonnenmacher", 
        "givenName": "Theo F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Weibel", 
        "givenName": "Ewald R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-7643-7412-8_28", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "3-7643-7172-2"
      ], 
      "name": "Fractals in Biology and Medicine", 
      "type": "Book"
    }, 
    "name": "Fractional Calculus and Symbolic Solution of Fractional Differential Equations", 
    "pagination": "287-298", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-7643-7412-8_28"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e851d91ae4185687f5ab450ebf6e9decefc48e6f7d8949b7e93e42cd5b82ab2a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048767704"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-7643-7412-8_28", 
      "https://app.dimensions.ai/details/publication/pub.1048767704"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000273.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-7643-7412-8_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7412-8_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7412-8_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7412-8_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7412-8_28'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-7643-7412-8_28 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8b038c289094479983f55c1abc420f91
4 schema:citation https://doi.org/10.1016/0370-1573(94)00055-7
5 https://doi.org/10.1016/0378-4371(94)90064-7
6 https://doi.org/10.1016/j.aanat.2006.03.001
7 https://doi.org/10.1016/s0006-3495(95)80157-8
8 https://doi.org/10.1016/s0370-1573(00)00070-3
9 https://doi.org/10.1063/1.470346
10 https://doi.org/10.1063/1.527251
11 https://doi.org/10.1088/0305-4470/28/23/012
12 schema:datePublished 2005
13 schema:datePublishedReg 2005-01-01
14 schema:description The aim of this article is to present a practical introduction to fractional calculus. Fractional calculus is an old mathematical subject concerned with fractional derivatives. Fractional derivatives used in this paper are restricted to the Riemann-Liouville type. Based on the Riemann-Liouville calculus, we formulate fractional differential equations. Fractional differential equations are applied to models in relaxation and diffusion problems. Fractional calculus is used to formulate and to solve different physical models allowing a continuous transition from relaxation to oscillation phenomena. An application to an anomalous diffusion process demonstrates that the method used is also useful for more than one independent variable. Based on the theory of fractional derivatives and linear transformation theory, we demonstrate how symbolic calculations on a computer can be used to support practical calculations. The symbolic program FractionalCalculus based on Mathematica is used to demonstrate the solution of fractional differential equations step by step. The key method applied is linear transformation theory in connection with generalized functions.
15 schema:editor N3ef00c0004aa499bbed7184f2e55b280
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N89df31dbf94a4213af03fba729fcc7b8
20 schema:name Fractional Calculus and Symbolic Solution of Fractional Differential Equations
21 schema:pagination 287-298
22 schema:productId N2eaeda7c78fb49b8904dc6a6492ec6c2
23 N869fc1a0388b4237b554209e8b769d46
24 Na210f748b3204b6e86b382c2b92eaf8e
25 schema:publisher Ne4d0bca59709444898cdfdebd8152a12
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048767704
27 https://doi.org/10.1007/3-7643-7412-8_28
28 schema:sdDatePublished 2019-04-15T13:31
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N41e1271a0a5e4f60915d3f2f926c9c95
31 schema:url http://link.springer.com/10.1007/3-7643-7412-8_28
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N1353d1982a7844a3bb34097138383d61 rdf:first N45d8b1705eef45fca9d7c8cb65f5b7ea
36 rdf:rest rdf:nil
37 N2102df83542d4699a9205ceb02b3287f schema:familyName Merlini
38 schema:givenName Danilo
39 rdf:type schema:Person
40 N2e5f2e5405d540e8a31879aed3279326 rdf:first Na1c22be9d75f46cb95043f17a261056b
41 rdf:rest N1353d1982a7844a3bb34097138383d61
42 N2eaeda7c78fb49b8904dc6a6492ec6c2 schema:name doi
43 schema:value 10.1007/3-7643-7412-8_28
44 rdf:type schema:PropertyValue
45 N3ef00c0004aa499bbed7184f2e55b280 rdf:first N840ffc1e79dd41b5be3c7157a5454c34
46 rdf:rest Na0e0e5428dd44f268d41ab27e6c2f615
47 N41e1271a0a5e4f60915d3f2f926c9c95 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N45d8b1705eef45fca9d7c8cb65f5b7ea schema:familyName Weibel
50 schema:givenName Ewald R.
51 rdf:type schema:Person
52 N840ffc1e79dd41b5be3c7157a5454c34 schema:familyName Losa
53 schema:givenName Gabriele A.
54 rdf:type schema:Person
55 N869fc1a0388b4237b554209e8b769d46 schema:name readcube_id
56 schema:value e851d91ae4185687f5ab450ebf6e9decefc48e6f7d8949b7e93e42cd5b82ab2a
57 rdf:type schema:PropertyValue
58 N89df31dbf94a4213af03fba729fcc7b8 schema:isbn 3-7643-7172-2
59 schema:name Fractals in Biology and Medicine
60 rdf:type schema:Book
61 N8b038c289094479983f55c1abc420f91 rdf:first sg:person.01247751074.51
62 rdf:rest rdf:nil
63 Na0e0e5428dd44f268d41ab27e6c2f615 rdf:first N2102df83542d4699a9205ceb02b3287f
64 rdf:rest N2e5f2e5405d540e8a31879aed3279326
65 Na1c22be9d75f46cb95043f17a261056b schema:familyName Nonnenmacher
66 schema:givenName Theo F.
67 rdf:type schema:Person
68 Na210f748b3204b6e86b382c2b92eaf8e schema:name dimensions_id
69 schema:value pub.1048767704
70 rdf:type schema:PropertyValue
71 Ne4d0bca59709444898cdfdebd8152a12 schema:location Basel
72 schema:name Birkhäuser-Verlag
73 rdf:type schema:Organisation
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
78 schema:name Pure Mathematics
79 rdf:type schema:DefinedTerm
80 sg:person.01247751074.51 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
81 schema:familyName Baumann
82 schema:givenName G.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51
84 rdf:type schema:Person
85 https://doi.org/10.1016/0370-1573(94)00055-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047105963
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0378-4371(94)90064-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023267745
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.aanat.2006.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046863806
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0006-3495(95)80157-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049177260
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0370-1573(00)00070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042976136
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.470346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058048328
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.527251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058104270
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1088/0305-4470/28/23/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059074635
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
102 schema:name Department of Mathematical Physics, University of Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...