H-Normal Matrices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Israel Gohberg , Peter Lancaster , Leiba Rodman

ABSTRACT

The main ideas developed in this chapter are, first, a classification (up to unitary similarity) of normal matrices in an indefinite inner product space and, second, the nature of canonical forms in this classification. In full generality, this problem area remains unsolved. We will show that it is not less complex than the problem of classification of pairwise v x v commuting matrices (up to simultaneous similarity), where v = min(v +, v -) and v +(v -) is the number of positive (negative) eigenvalues of H. In the research literature the latter problem is said to be “wild”. In contrast, it is well known that for the case when H is positive definite the situation is clear and can be reduced to the problem of simultaneous diagonalization of pairwise commuting selfadjoint matrices. A complete theory is presented here for the special case when the indefinite inner product is defined by \([x,y] = (Hx,y)\), where H is invertible and hermitian with only one negative or positive eigenvalue. This includes the description of canonical form and invariants. In this chapter we use consistently the language of linear transformations, i.e., a linear transformation on Cn is identified with its matrix representation in the standard basis e 1, . . . , e n. On the other hand, it will also be convenient to work with matrix representations of the same linear transformation with respect to different bases. More... »

PAGES

159-177

Book

TITLE

Indefinite Linear Algebra and Applications

ISBN

3-7643-7349-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-7643-7350-4_8

DOI

http://dx.doi.org/10.1007/3-7643-7350-4_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010930477


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Gohberg", 
        "givenName": "Israel", 
        "id": "sg:person.014342365277.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342365277.86"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Lancaster", 
        "givenName": "Peter", 
        "id": "sg:person.013243372716.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243372716.32"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Rodman", 
        "givenName": "Leiba", 
        "id": "sg:person.0727056254.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727056254.14"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "The main ideas developed in this chapter are, first, a classification (up to unitary similarity) of normal matrices in an indefinite inner product space and, second, the nature of canonical forms in this classification. In full generality, this problem area remains unsolved. We will show that it is not less complex than the problem of classification of pairwise v x v commuting matrices (up to simultaneous similarity), where v = min(v +, v -) and v +(v -) is the number of positive (negative) eigenvalues of H. In the research literature the latter problem is said to be \u201cwild\u201d. In contrast, it is well known that for the case when H is positive definite the situation is clear and can be reduced to the problem of simultaneous diagonalization of pairwise commuting selfadjoint matrices. A complete theory is presented here for the special case when the indefinite inner product is defined by \\([x,y] = (Hx,y)\\), where H is invertible and hermitian with only one negative or positive eigenvalue. This includes the description of canonical form and invariants. In this chapter we use consistently the language of linear transformations, i.e., a linear transformation on Cn is identified with its matrix representation in the standard basis e 1, . . . , e n. On the other hand, it will also be convenient to work with matrix representations of the same linear transformation with respect to different bases.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-7643-7350-4_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "3-7643-7349-0"
      ], 
      "name": "Indefinite Linear Algebra and Applications", 
      "type": "Book"
    }, 
    "name": "H-Normal Matrices", 
    "pagination": "159-177", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-7643-7350-4_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3413874c05dbfe5427cf5d0a46a747a344678d9af6a5a6b1a920f42ec597436f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010930477"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-7643-7350-4_8", 
      "https://app.dimensions.ai/details/publication/pub.1010930477"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000018.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-7643-7350-4_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7350-4_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7350-4_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7350-4_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7350-4_8'


 

This table displays all metadata directly associated to this object as RDF triples.

66 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-7643-7350-4_8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7e2632f1fce44440a56c180949547d07
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description The main ideas developed in this chapter are, first, a classification (up to unitary similarity) of normal matrices in an indefinite inner product space and, second, the nature of canonical forms in this classification. In full generality, this problem area remains unsolved. We will show that it is not less complex than the problem of classification of pairwise v x v commuting matrices (up to simultaneous similarity), where v = min(v +, v -) and v +(v -) is the number of positive (negative) eigenvalues of H. In the research literature the latter problem is said to be “wild”. In contrast, it is well known that for the case when H is positive definite the situation is clear and can be reduced to the problem of simultaneous diagonalization of pairwise commuting selfadjoint matrices. A complete theory is presented here for the special case when the indefinite inner product is defined by \([x,y] = (Hx,y)\), where H is invertible and hermitian with only one negative or positive eigenvalue. This includes the description of canonical form and invariants. In this chapter we use consistently the language of linear transformations, i.e., a linear transformation on Cn is identified with its matrix representation in the standard basis e 1, . . . , e n. On the other hand, it will also be convenient to work with matrix representations of the same linear transformation with respect to different bases.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N5654dc60b7f74ff58863f674cf8e7065
11 schema:name H-Normal Matrices
12 schema:pagination 159-177
13 schema:productId N7978a078642e49dd86e8137c2a735bcb
14 Nb0f843bcdaa648559f4d524cfbaa9b96
15 Nde570562f6844d1f9cf6bd4811b3840e
16 schema:publisher N8bb140710465440fb234cbda413b2991
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010930477
18 https://doi.org/10.1007/3-7643-7350-4_8
19 schema:sdDatePublished 2019-04-15T11:16
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N9dfa5c3375954a68a60c7a3553e9eb82
22 schema:url http://link.springer.com/10.1007/3-7643-7350-4_8
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N1e353f0687be43f784c25b94e66fcddb rdf:first sg:person.013243372716.32
27 rdf:rest Na133868003d3433e87a4a8f06b3465e0
28 N5654dc60b7f74ff58863f674cf8e7065 schema:isbn 3-7643-7349-0
29 schema:name Indefinite Linear Algebra and Applications
30 rdf:type schema:Book
31 N7978a078642e49dd86e8137c2a735bcb schema:name dimensions_id
32 schema:value pub.1010930477
33 rdf:type schema:PropertyValue
34 N7e2632f1fce44440a56c180949547d07 rdf:first sg:person.014342365277.86
35 rdf:rest N1e353f0687be43f784c25b94e66fcddb
36 N8bb140710465440fb234cbda413b2991 schema:location Basel
37 schema:name Birkhäuser-Verlag
38 rdf:type schema:Organisation
39 N9dfa5c3375954a68a60c7a3553e9eb82 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Na133868003d3433e87a4a8f06b3465e0 rdf:first sg:person.0727056254.14
42 rdf:rest rdf:nil
43 Nb0f843bcdaa648559f4d524cfbaa9b96 schema:name doi
44 schema:value 10.1007/3-7643-7350-4_8
45 rdf:type schema:PropertyValue
46 Nde570562f6844d1f9cf6bd4811b3840e schema:name readcube_id
47 schema:value 3413874c05dbfe5427cf5d0a46a747a344678d9af6a5a6b1a920f42ec597436f
48 rdf:type schema:PropertyValue
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:person.013243372716.32 schema:familyName Lancaster
56 schema:givenName Peter
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243372716.32
58 rdf:type schema:Person
59 sg:person.014342365277.86 schema:familyName Gohberg
60 schema:givenName Israel
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342365277.86
62 rdf:type schema:Person
63 sg:person.0727056254.14 schema:familyName Rodman
64 schema:givenName Leiba
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727056254.14
66 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...