How do endothelial cells orientate? View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Holger Gerhardt , Christer Betsholtz

ABSTRACT

In sprouting angiogenesis, endothelial cells must orientate in the tissue environment in order to effectively invade tissues and form vascular patterns according to the local needs. Here, we review recent data indicating that sprouting angiogenesis is a guided process resembling axonal guidance and insect trachea formation. Angiogenesis requires functional specialization of endothelial cells within the sprout. Cells situated at the tip of the sprouts sense and navigate the environment using long filopodia, whereas cells in the sprout stalks proliferate and form a vascular lumen. Migration of the tip cells depends on a graded distribution of VEGF-A and activation of VEGFR2 located on the tip-cell filopodia. Proliferation in the stalk is concomitantly regulated by the local VEGF-A levels. Thus, the shape of the VEGF-A gradient controls the balance between tip cell migration and stalk cell proliferation, which in turn determines the initial vascular pattern. An imbalance between the two processes may explain why abnormal vascular patterns develop in pathological angiogenesis. More... »

PAGES

3-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-7643-7311-3_1

DOI

http://dx.doi.org/10.1007/3-7643-7311-3_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001296347

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15617467


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Division", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endothelium, Vascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neovascularization, Physiologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Endothelial Growth Factor A", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vascular Biology Laboratory, Cancer Research UK, 44 Lincoln\u2019s Inn Fields, WC 2A 3PX, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.11485.39", 
          "name": [
            "Vascular Biology Laboratory, Cancer Research UK, 44 Lincoln\u2019s Inn Fields, WC 2A 3PX, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerhardt", 
        "givenName": "Holger", 
        "id": "sg:person.0754535466.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754535466.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Vascular Biology Division of Matrix Biology, House A3, Plan 4, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 2, 17177, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Laboratory of Vascular Biology Division of Matrix Biology, House A3, Plan 4, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 2, 17177, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Betsholtz", 
        "givenName": "Christer", 
        "id": "sg:person.01273525553.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273525553.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "In sprouting angiogenesis, endothelial cells must orientate in the tissue environment in order to effectively invade tissues and form vascular patterns according to the local needs. Here, we review recent data indicating that sprouting angiogenesis is a guided process resembling axonal guidance and insect trachea formation. Angiogenesis requires functional specialization of endothelial cells within the sprout. Cells situated at the tip of the sprouts sense and navigate the environment using long filopodia, whereas cells in the sprout stalks proliferate and form a vascular lumen. Migration of the tip cells depends on a graded distribution of VEGF-A and activation of VEGFR2 located on the tip-cell filopodia. Proliferation in the stalk is concomitantly regulated by the local VEGF-A levels. Thus, the shape of the VEGF-A gradient controls the balance between tip cell migration and stalk cell proliferation, which in turn determines the initial vascular pattern. An imbalance between the two processes may explain why abnormal vascular patterns develop in pathological angiogenesis.", 
    "editor": [
      {
        "familyName": "Clauss", 
        "givenName": "Matthias", 
        "type": "Person"
      }, 
      {
        "familyName": "Breier", 
        "givenName": "Georg", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-7643-7311-3_1", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-6459-5", 
        "978-3-7643-7311-5"
      ], 
      "name": "Mechanisms of Angiogenesis", 
      "type": "Book"
    }, 
    "keywords": [
      "sprouting angiogenesis", 
      "stalk cell proliferation", 
      "tip cell migration", 
      "tip cell filopodia", 
      "endothelial cells", 
      "tip cells", 
      "activation of VEGFR2", 
      "cell migration", 
      "axonal guidance", 
      "long filopodia", 
      "pathological angiogenesis", 
      "cell proliferation", 
      "tissue environment", 
      "functional specialization", 
      "filopodia", 
      "cells", 
      "distribution of VEGF", 
      "angiogenesis", 
      "proliferation", 
      "stalk", 
      "recent data", 
      "VEGF", 
      "migration", 
      "patterns", 
      "local VEGF", 
      "VEGFR2", 
      "activation", 
      "specialization", 
      "sprouts", 
      "tissue", 
      "vascular lumen", 
      "environment", 
      "lumen", 
      "gradient", 
      "formation", 
      "vascular pattern", 
      "process", 
      "levels", 
      "tip", 
      "imbalance", 
      "turn", 
      "balance", 
      "distribution", 
      "data", 
      "shape", 
      "order", 
      "need", 
      "guidance", 
      "sense", 
      "abnormal vascular pattern", 
      "local needs"
    ], 
    "name": "How do endothelial cells orientate?", 
    "pagination": "3-15", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001296347"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-7643-7311-3_1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15617467"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-7643-7311-3_1", 
      "https://app.dimensions.ai/details/publication/pub.1001296347"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_3.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-7643-7311-3_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7311-3_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7311-3_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7311-3_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-7643-7311-3_1'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      22 PREDICATES      84 URIs      77 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-7643-7311-3_1 schema:about N0bb652fbb2964028a25c28bdf55dcd30
2 N4a5ed692ad42447db89dad78b2a854b3
3 N9620e51659fd41a6a315cec43fe6eb7a
4 N99ed6e8750bc43dc8ab98eec23897520
5 Nddf1256b952745f0909de811d63d9d56
6 Ndf0e946555614b2a8bebf0743b70a0f8
7 Nf43ab54dfb324da9a93c07172d0e80e3
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author N9377e8d27f934839923d562f1e73024a
11 schema:datePublished 2005
12 schema:datePublishedReg 2005-01-01
13 schema:description In sprouting angiogenesis, endothelial cells must orientate in the tissue environment in order to effectively invade tissues and form vascular patterns according to the local needs. Here, we review recent data indicating that sprouting angiogenesis is a guided process resembling axonal guidance and insect trachea formation. Angiogenesis requires functional specialization of endothelial cells within the sprout. Cells situated at the tip of the sprouts sense and navigate the environment using long filopodia, whereas cells in the sprout stalks proliferate and form a vascular lumen. Migration of the tip cells depends on a graded distribution of VEGF-A and activation of VEGFR2 located on the tip-cell filopodia. Proliferation in the stalk is concomitantly regulated by the local VEGF-A levels. Thus, the shape of the VEGF-A gradient controls the balance between tip cell migration and stalk cell proliferation, which in turn determines the initial vascular pattern. An imbalance between the two processes may explain why abnormal vascular patterns develop in pathological angiogenesis.
14 schema:editor N8aedee1d990c403f991ecb2cf61eb21d
15 schema:genre chapter
16 schema:isAccessibleForFree false
17 schema:isPartOf N86227793b72348cb991c29e55328ffe3
18 schema:keywords VEGF
19 VEGFR2
20 abnormal vascular pattern
21 activation
22 activation of VEGFR2
23 angiogenesis
24 axonal guidance
25 balance
26 cell migration
27 cell proliferation
28 cells
29 data
30 distribution
31 distribution of VEGF
32 endothelial cells
33 environment
34 filopodia
35 formation
36 functional specialization
37 gradient
38 guidance
39 imbalance
40 levels
41 local VEGF
42 local needs
43 long filopodia
44 lumen
45 migration
46 need
47 order
48 pathological angiogenesis
49 patterns
50 process
51 proliferation
52 recent data
53 sense
54 shape
55 specialization
56 sprouting angiogenesis
57 sprouts
58 stalk
59 stalk cell proliferation
60 tip
61 tip cell filopodia
62 tip cell migration
63 tip cells
64 tissue
65 tissue environment
66 turn
67 vascular lumen
68 vascular pattern
69 schema:name How do endothelial cells orientate?
70 schema:pagination 3-15
71 schema:productId N2f4f27ec5bd641068e693a0d47eed9a9
72 N4b6d517ae0de4404b503dca4280ebbfc
73 Ne6b6937199e04ea49a671d6ced9a2f59
74 schema:publisher N5928b1905ac84de3ba84644e500c79e1
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001296347
76 https://doi.org/10.1007/3-7643-7311-3_1
77 schema:sdDatePublished 2022-09-02T16:13
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Na4251321578e474580ad4de7f4b02ab5
80 schema:url https://doi.org/10.1007/3-7643-7311-3_1
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N0bb652fbb2964028a25c28bdf55dcd30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Cell Division
86 rdf:type schema:DefinedTerm
87 N2f4f27ec5bd641068e693a0d47eed9a9 schema:name dimensions_id
88 schema:value pub.1001296347
89 rdf:type schema:PropertyValue
90 N32d05504a6e24f5dbb966ea746bcfc28 rdf:first N646057c5b6104e989996892ab2cda47e
91 rdf:rest rdf:nil
92 N4a5ed692ad42447db89dad78b2a854b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Cell Movement
94 rdf:type schema:DefinedTerm
95 N4b6d517ae0de4404b503dca4280ebbfc schema:name doi
96 schema:value 10.1007/3-7643-7311-3_1
97 rdf:type schema:PropertyValue
98 N536770d9c98b4add955c1e0cd08ab201 rdf:first sg:person.01273525553.31
99 rdf:rest rdf:nil
100 N5928b1905ac84de3ba84644e500c79e1 schema:name Springer Nature
101 rdf:type schema:Organisation
102 N646057c5b6104e989996892ab2cda47e schema:familyName Breier
103 schema:givenName Georg
104 rdf:type schema:Person
105 N676e313917a44e97a4adfeaa74965cf1 schema:familyName Clauss
106 schema:givenName Matthias
107 rdf:type schema:Person
108 N86227793b72348cb991c29e55328ffe3 schema:isbn 978-3-7643-6459-5
109 978-3-7643-7311-5
110 schema:name Mechanisms of Angiogenesis
111 rdf:type schema:Book
112 N8aedee1d990c403f991ecb2cf61eb21d rdf:first N676e313917a44e97a4adfeaa74965cf1
113 rdf:rest N32d05504a6e24f5dbb966ea746bcfc28
114 N9377e8d27f934839923d562f1e73024a rdf:first sg:person.0754535466.06
115 rdf:rest N536770d9c98b4add955c1e0cd08ab201
116 N9620e51659fd41a6a315cec43fe6eb7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Animals
118 rdf:type schema:DefinedTerm
119 N99ed6e8750bc43dc8ab98eec23897520 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Vascular Endothelial Growth Factor A
121 rdf:type schema:DefinedTerm
122 Na4251321578e474580ad4de7f4b02ab5 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nddf1256b952745f0909de811d63d9d56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Endothelium, Vascular
126 rdf:type schema:DefinedTerm
127 Ndf0e946555614b2a8bebf0743b70a0f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Neovascularization, Physiologic
129 rdf:type schema:DefinedTerm
130 Ne6b6937199e04ea49a671d6ced9a2f59 schema:name pubmed_id
131 schema:value 15617467
132 rdf:type schema:PropertyValue
133 Nf43ab54dfb324da9a93c07172d0e80e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Humans
135 rdf:type schema:DefinedTerm
136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
137 schema:name Biological Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
140 schema:name Biochemistry and Cell Biology
141 rdf:type schema:DefinedTerm
142 sg:person.01273525553.31 schema:affiliation grid-institutes:grid.4714.6
143 schema:familyName Betsholtz
144 schema:givenName Christer
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273525553.31
146 rdf:type schema:Person
147 sg:person.0754535466.06 schema:affiliation grid-institutes:grid.11485.39
148 schema:familyName Gerhardt
149 schema:givenName Holger
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754535466.06
151 rdf:type schema:Person
152 grid-institutes:grid.11485.39 schema:alternateName Vascular Biology Laboratory, Cancer Research UK, 44 Lincoln’s Inn Fields, WC 2A 3PX, London, UK
153 schema:name Vascular Biology Laboratory, Cancer Research UK, 44 Lincoln’s Inn Fields, WC 2A 3PX, London, UK
154 rdf:type schema:Organization
155 grid-institutes:grid.4714.6 schema:alternateName Laboratory of Vascular Biology Division of Matrix Biology, House A3, Plan 4, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 2, 17177, Stockholm, Sweden
156 schema:name Laboratory of Vascular Biology Division of Matrix Biology, House A3, Plan 4, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 2, 17177, Stockholm, Sweden
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...