Robust and Efficient Sharing of RSA Functions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1996

AUTHORS

Rosario Gennaro , Stanisław Jarecki , Hugo Krawczyk , Tal Rabin

ABSTRACT

We present two efficient protocols which implement robust threshold RSA signature schemes, where the power to sign is shared by N players such that any subset of T or more signers can collaborate to produce a valid RSA signature on any given message, but no subset of fewer than T corrupted players can forge a signature. Our protocols are robust in the sense that the correct signature is computed even if up to T − 1 players behave in arbitrarily malicious way during the signature protocol. This in particular includes the cases of players that refuse to participate or that generate incorrect partial signatures. Our robust protocols achieve optimal resiliency as they can tolerate up to (N − 1)/2 faults, and their efficiency is comparable to the efficiency of the underlying threshold RSA signature scheme.Robust threshold signature schemes have very important applications, since they provide increased security and availability for a signing server (e.g. a certification authority or an electronic cash provider). Solutions for the case of the RSA signature scheme are especially important because of its widespread use. In addition, these techniques apply to shared RSA decryption as well, thus leading to efficient key escrow schemes for RSA.Our schemes are based on some interesting extensions that we devised for the information checking protocol of T. Rabin and Ben-Or [Rab94], [RB89], and the undeniable signature work initiated by Chaum and van Antwerpen [CA90]. These extensions have some attractive properties, and hence are of independent interest. More... »

PAGES

157-172

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-68697-5_13

DOI

http://dx.doi.org/10.1007/3-540-68697-5_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000281158


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MIT Laboratory for Computer Science, 545 Tech Square, 02139, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT Laboratory for Computer Science, 545 Tech Square, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gennaro", 
        "givenName": "Rosario", 
        "id": "sg:person.013573255563.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573255563.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MIT Laboratory for Computer Science, 545 Tech Square, 02139, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT Laboratory for Computer Science, 545 Tech Square, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jarecki", 
        "givenName": "Stanis\u0142aw", 
        "id": "sg:person.014344574541.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014344574541.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, PO Box 704, 10598, Yorktown Heights, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, PO Box 704, 10598, Yorktown Heights, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krawczyk", 
        "givenName": "Hugo", 
        "id": "sg:person.013004021661.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004021661.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MIT Laboratory for Computer Science, 545 Tech Square, 02139, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT Laboratory for Computer Science, 545 Tech Square, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rabin", 
        "givenName": "Tal", 
        "id": "sg:person.015473523512.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "We present two efficient protocols which implement robust threshold RSA signature schemes, where the power to sign is shared by N players such that any subset of T or more signers can collaborate to produce a valid RSA signature on any given message, but no subset of fewer than T corrupted players can forge a signature. Our protocols are robust in the sense that the correct signature is computed even if up to T \u2212 1 players behave in arbitrarily malicious way during the signature protocol. This in particular includes the cases of players that refuse to participate or that generate incorrect partial signatures. Our robust protocols achieve optimal resiliency as they can tolerate up to (N \u2212 1)/2 faults, and their efficiency is comparable to the efficiency of the underlying threshold RSA signature scheme.Robust threshold signature schemes have very important applications, since they provide increased security and availability for a signing server (e.g. a certification authority or an electronic cash provider). Solutions for the case of the RSA signature scheme are especially important because of its widespread use. In addition, these techniques apply to shared RSA decryption as well, thus leading to efficient key escrow schemes for RSA.Our schemes are based on some interesting extensions that we devised for the information checking protocol of T. Rabin and Ben-Or [Rab94], [RB89], and the undeniable signature work initiated by Chaum and van Antwerpen [CA90]. These extensions have some attractive properties, and hence are of independent interest.", 
    "editor": [
      {
        "familyName": "Koblitz", 
        "givenName": "Neal", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-68697-5_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-61512-5", 
        "978-3-540-68697-2"
      ], 
      "name": "Advances in Cryptology \u2014 CRYPTO \u201996", 
      "type": "Book"
    }, 
    "keywords": [
      "RSA signature scheme", 
      "threshold RSA signature scheme", 
      "signature scheme", 
      "key escrow scheme", 
      "threshold signature scheme", 
      "signing server", 
      "malicious way", 
      "efficient sharing", 
      "optimal resiliency", 
      "independent interest", 
      "case of players", 
      "RSA signatures", 
      "signature protocol", 
      "RSA function", 
      "more signers", 
      "RSA decryption", 
      "van Antwerpen", 
      "partial signatures", 
      "interesting extension", 
      "correct signature", 
      "important applications", 
      "scheme", 
      "attractive properties", 
      "signature work", 
      "efficient protocol", 
      "protocol", 
      "decryption", 
      "server", 
      "Chaum", 
      "extension", 
      "security", 
      "RSA", 
      "sharing", 
      "robust protocol", 
      "signers", 
      "messages", 
      "players", 
      "widespread use", 
      "solution", 
      "efficiency", 
      "Rabin", 
      "information", 
      "resiliency", 
      "signatures", 
      "applications", 
      "faults", 
      "Antwerpen", 
      "subset", 
      "cases", 
      "properties", 
      "sense", 
      "technique", 
      "function", 
      "way", 
      "power", 
      "work", 
      "availability", 
      "interest", 
      "use", 
      "Ben", 
      "addition"
    ], 
    "name": "Robust and Efficient Sharing of RSA Functions", 
    "pagination": "157-172", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000281158"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-68697-5_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-68697-5_13", 
      "https://app.dimensions.ai/details/publication/pub.1000281158"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_288.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-68697-5_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-68697-5_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-68697-5_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-68697-5_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-68697-5_13'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-68697-5_13 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N299691ebb813475c862ecd217b55b280
4 schema:datePublished 1996
5 schema:datePublishedReg 1996-01-01
6 schema:description We present two efficient protocols which implement robust threshold RSA signature schemes, where the power to sign is shared by N players such that any subset of T or more signers can collaborate to produce a valid RSA signature on any given message, but no subset of fewer than T corrupted players can forge a signature. Our protocols are robust in the sense that the correct signature is computed even if up to T − 1 players behave in arbitrarily malicious way during the signature protocol. This in particular includes the cases of players that refuse to participate or that generate incorrect partial signatures. Our robust protocols achieve optimal resiliency as they can tolerate up to (N − 1)/2 faults, and their efficiency is comparable to the efficiency of the underlying threshold RSA signature scheme.Robust threshold signature schemes have very important applications, since they provide increased security and availability for a signing server (e.g. a certification authority or an electronic cash provider). Solutions for the case of the RSA signature scheme are especially important because of its widespread use. In addition, these techniques apply to shared RSA decryption as well, thus leading to efficient key escrow schemes for RSA.Our schemes are based on some interesting extensions that we devised for the information checking protocol of T. Rabin and Ben-Or [Rab94], [RB89], and the undeniable signature work initiated by Chaum and van Antwerpen [CA90]. These extensions have some attractive properties, and hence are of independent interest.
7 schema:editor Na30772211e2b483cac52f19e54984709
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Ne62f0791c3bf4bc8a107e752d3492a6b
12 schema:keywords Antwerpen
13 Ben
14 Chaum
15 RSA
16 RSA decryption
17 RSA function
18 RSA signature scheme
19 RSA signatures
20 Rabin
21 addition
22 applications
23 attractive properties
24 availability
25 case of players
26 cases
27 correct signature
28 decryption
29 efficiency
30 efficient protocol
31 efficient sharing
32 extension
33 faults
34 function
35 important applications
36 independent interest
37 information
38 interest
39 interesting extension
40 key escrow scheme
41 malicious way
42 messages
43 more signers
44 optimal resiliency
45 partial signatures
46 players
47 power
48 properties
49 protocol
50 resiliency
51 robust protocol
52 scheme
53 security
54 sense
55 server
56 sharing
57 signature protocol
58 signature scheme
59 signature work
60 signatures
61 signers
62 signing server
63 solution
64 subset
65 technique
66 threshold RSA signature scheme
67 threshold signature scheme
68 use
69 van Antwerpen
70 way
71 widespread use
72 work
73 schema:name Robust and Efficient Sharing of RSA Functions
74 schema:pagination 157-172
75 schema:productId N0bc9c5c3d8024decbfd186bc26520db9
76 Necf5041f8eb14bbaa54e1f44d439987e
77 schema:publisher Ne67466cb249d43d484046beeea562b58
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000281158
79 https://doi.org/10.1007/3-540-68697-5_13
80 schema:sdDatePublished 2022-05-20T07:45
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N50c73ab005744e18b5c7707887e8a2fa
83 schema:url https://doi.org/10.1007/3-540-68697-5_13
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N0bc9c5c3d8024decbfd186bc26520db9 schema:name doi
88 schema:value 10.1007/3-540-68697-5_13
89 rdf:type schema:PropertyValue
90 N221c9b2a72d94b5d9b0d37b9a487f5b5 schema:familyName Koblitz
91 schema:givenName Neal
92 rdf:type schema:Person
93 N299691ebb813475c862ecd217b55b280 rdf:first sg:person.013573255563.35
94 rdf:rest N636499a700bb4411955054fe1c8d2a27
95 N50c73ab005744e18b5c7707887e8a2fa schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N636499a700bb4411955054fe1c8d2a27 rdf:first sg:person.014344574541.81
98 rdf:rest N87537642e6b4400cb3ddd4f2fe60a944
99 N87537642e6b4400cb3ddd4f2fe60a944 rdf:first sg:person.013004021661.30
100 rdf:rest Ne96cb9f5d64544629b89dfe5611b9a9e
101 Na30772211e2b483cac52f19e54984709 rdf:first N221c9b2a72d94b5d9b0d37b9a487f5b5
102 rdf:rest rdf:nil
103 Ne62f0791c3bf4bc8a107e752d3492a6b schema:isbn 978-3-540-61512-5
104 978-3-540-68697-2
105 schema:name Advances in Cryptology — CRYPTO ’96
106 rdf:type schema:Book
107 Ne67466cb249d43d484046beeea562b58 schema:name Springer Nature
108 rdf:type schema:Organisation
109 Ne96cb9f5d64544629b89dfe5611b9a9e rdf:first sg:person.015473523512.58
110 rdf:rest rdf:nil
111 Necf5041f8eb14bbaa54e1f44d439987e schema:name dimensions_id
112 schema:value pub.1000281158
113 rdf:type schema:PropertyValue
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
118 schema:name Data Format
119 rdf:type schema:DefinedTerm
120 sg:person.013004021661.30 schema:affiliation grid-institutes:grid.481554.9
121 schema:familyName Krawczyk
122 schema:givenName Hugo
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004021661.30
124 rdf:type schema:Person
125 sg:person.013573255563.35 schema:affiliation grid-institutes:grid.116068.8
126 schema:familyName Gennaro
127 schema:givenName Rosario
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573255563.35
129 rdf:type schema:Person
130 sg:person.014344574541.81 schema:affiliation grid-institutes:grid.116068.8
131 schema:familyName Jarecki
132 schema:givenName Stanisław
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014344574541.81
134 rdf:type schema:Person
135 sg:person.015473523512.58 schema:affiliation grid-institutes:grid.116068.8
136 schema:familyName Rabin
137 schema:givenName Tal
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015473523512.58
139 rdf:type schema:Person
140 grid-institutes:grid.116068.8 schema:alternateName MIT Laboratory for Computer Science, 545 Tech Square, 02139, Cambridge, MA, USA
141 schema:name MIT Laboratory for Computer Science, 545 Tech Square, 02139, Cambridge, MA, USA
142 rdf:type schema:Organization
143 grid-institutes:grid.481554.9 schema:alternateName IBM T.J. Watson Research Center, PO Box 704, 10598, Yorktown Heights, New York, USA
144 schema:name IBM T.J. Watson Research Center, PO Box 704, 10598, Yorktown Heights, New York, USA
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...