On typical implementations of Hough transform for improving its performances View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Jun-ichiro Hayashi , Kunihito Kato , Toshio Endoh , Kazuhito Murakami , Takashi Toriu , Hiroyasu Koshimizu

ABSTRACT

This paper proposes two typical implementations of Hough transform for improving Hough performances. RVHT(Randomized Voting Hough Transform) can provide higher detectability of shorter edge lines with lower computation cost than RHT(randomized HT) and PHT(probabilistic HT) algorithms. Simultaneously, DTHT(Digital Template Hough Transform) can provide more higher detectability of shorter edges. Apart from the superiority of the direct line segment matching, since DTHT must prepare 4-dimensional parameter space for line segment detection, its computation must be reduced hereafter. More... »

PAGES

1-8

Book

TITLE

Computer Vision — ACCV'98

ISBN

978-3-540-63931-2
978-3-540-69670-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-63931-4_191

DOI

http://dx.doi.org/10.1007/3-540-63931-4_191

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022565094


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chukyo University", 
          "id": "https://www.grid.ac/institutes/grid.411620.0", 
          "name": [
            "School of Computer and Cognitive Sciences, Chukyo Univ., 101 Tokodate, 470-03\u00a0Kaizucho, Toyota, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Jun-ichiro", 
        "id": "sg:person.016354526525.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354526525.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gifu University", 
          "id": "https://www.grid.ac/institutes/grid.256342.4", 
          "name": [
            "Faculty of Engineering, Gifu Univ., 1-1 Yanagido, 501-11\u00a0Gifu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Kunihito", 
        "id": "sg:person.014027322375.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014027322375.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Fujitsu Laboratories Ltd., 101 Tokodate, 470-03\u00a0Kaizu-cho, Toyota, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Endoh", 
        "givenName": "Toshio", 
        "id": "sg:person.014237243030.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237243030.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chukyo University", 
          "id": "https://www.grid.ac/institutes/grid.411620.0", 
          "name": [
            "School of Computer and Cognitive Sciences, Chukyo Univ., 101 Tokodate, 470-03\u00a0Kaizucho, Toyota, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murakami", 
        "givenName": "Kazuhito", 
        "id": "sg:person.010746007357.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746007357.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Fujitsu Laboratories Ltd., 101 Tokodate, 470-03\u00a0Kaizu-cho, Toyota, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toriu", 
        "givenName": "Takashi", 
        "id": "sg:person.07353046357.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07353046357.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chukyo University", 
          "id": "https://www.grid.ac/institutes/grid.411620.0", 
          "name": [
            "School of Computer and Cognitive Sciences, Chukyo Univ., 101 Tokodate, 470-03\u00a0Kaizucho, Toyota, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koshimizu", 
        "givenName": "Hiroyasu", 
        "id": "sg:person.012525522563.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525522563.85"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "This paper proposes two typical implementations of Hough transform for improving Hough performances. RVHT(Randomized Voting Hough Transform) can provide higher detectability of shorter edge lines with lower computation cost than RHT(randomized HT) and PHT(probabilistic HT) algorithms. Simultaneously, DTHT(Digital Template Hough Transform) can provide more higher detectability of shorter edges. Apart from the superiority of the direct line segment matching, since DTHT must prepare 4-dimensional parameter space for line segment detection, its computation must be reduced hereafter.", 
    "editor": [
      {
        "familyName": "Chin", 
        "givenName": "Roland", 
        "type": "Person"
      }, 
      {
        "familyName": "Pong", 
        "givenName": "Ting-Chuen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-63931-4_191", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-63931-2", 
        "978-3-540-69670-4"
      ], 
      "name": "Computer Vision \u2014 ACCV'98", 
      "type": "Book"
    }, 
    "name": "On typical implementations of Hough transform for improving its performances", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-63931-4_191"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6b8152e66c3e65ac354c8f75cfd5d9e9804edf47fa7fe20a8e162e5f9eef49fa"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022565094"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-63931-4_191", 
      "https://app.dimensions.ai/details/publication/pub.1022565094"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000038.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-63931-4_191"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-63931-4_191'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-63931-4_191'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-63931-4_191'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-63931-4_191'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-63931-4_191 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8f9fafbd0d614db8a2b9706e3db350b0
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description This paper proposes two typical implementations of Hough transform for improving Hough performances. RVHT(Randomized Voting Hough Transform) can provide higher detectability of shorter edge lines with lower computation cost than RHT(randomized HT) and PHT(probabilistic HT) algorithms. Simultaneously, DTHT(Digital Template Hough Transform) can provide more higher detectability of shorter edges. Apart from the superiority of the direct line segment matching, since DTHT must prepare 4-dimensional parameter space for line segment detection, its computation must be reduced hereafter.
7 schema:editor Nf4e3b9300e6c4939a2cd1a507574bfb1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N858e24e047ea4bd6be666e936ee393d0
12 schema:name On typical implementations of Hough transform for improving its performances
13 schema:pagination 1-8
14 schema:productId N0bd8cd76053a402fb653f9fe493a7db6
15 Nd54156df57eb486c8761bdad54ca0005
16 Nf4e9c8b334b644deb97969f242f76e8b
17 schema:publisher N130c8ae367dc4f1688eac0dfb9862317
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022565094
19 https://doi.org/10.1007/3-540-63931-4_191
20 schema:sdDatePublished 2019-04-15T19:52
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N3315972f8d194670a6afa351bae2b9b4
23 schema:url http://link.springer.com/10.1007/3-540-63931-4_191
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0bd8cd76053a402fb653f9fe493a7db6 schema:name doi
28 schema:value 10.1007/3-540-63931-4_191
29 rdf:type schema:PropertyValue
30 N0e0221230d2c4b03aea490fec82af6e3 rdf:first sg:person.07353046357.83
31 rdf:rest N63d804d8361e4b45a44dced421665caa
32 N0f594eb9316341f697ef9ae2d2e33092 schema:name Fujitsu Laboratories Ltd., 101 Tokodate, 470-03 Kaizu-cho, Toyota, Japan
33 rdf:type schema:Organization
34 N130c8ae367dc4f1688eac0dfb9862317 schema:location Berlin, Heidelberg
35 schema:name Springer Berlin Heidelberg
36 rdf:type schema:Organisation
37 N3315972f8d194670a6afa351bae2b9b4 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N5031132f1e4544398d1f73d84e75a04b schema:name Fujitsu Laboratories Ltd., 101 Tokodate, 470-03 Kaizu-cho, Toyota, Japan
40 rdf:type schema:Organization
41 N5396e2367c5e43c2b56ceae287494926 rdf:first sg:person.014027322375.36
42 rdf:rest Nf5937d9112a246d18fd697590538e623
43 N63d804d8361e4b45a44dced421665caa rdf:first sg:person.012525522563.85
44 rdf:rest rdf:nil
45 N805e9b5ad992425daf226db787faede4 rdf:first sg:person.010746007357.13
46 rdf:rest N0e0221230d2c4b03aea490fec82af6e3
47 N858e24e047ea4bd6be666e936ee393d0 schema:isbn 978-3-540-63931-2
48 978-3-540-69670-4
49 schema:name Computer Vision — ACCV'98
50 rdf:type schema:Book
51 N8e6a79a13b1442a591d300be62b50b03 rdf:first Nb4331e1ac1bd471da9f2d34902916bb1
52 rdf:rest rdf:nil
53 N8f9fafbd0d614db8a2b9706e3db350b0 rdf:first sg:person.016354526525.43
54 rdf:rest N5396e2367c5e43c2b56ceae287494926
55 Nb11bf3226c68467fb91163e387fb16c7 schema:familyName Chin
56 schema:givenName Roland
57 rdf:type schema:Person
58 Nb4331e1ac1bd471da9f2d34902916bb1 schema:familyName Pong
59 schema:givenName Ting-Chuen
60 rdf:type schema:Person
61 Nd54156df57eb486c8761bdad54ca0005 schema:name readcube_id
62 schema:value 6b8152e66c3e65ac354c8f75cfd5d9e9804edf47fa7fe20a8e162e5f9eef49fa
63 rdf:type schema:PropertyValue
64 Nf4e3b9300e6c4939a2cd1a507574bfb1 rdf:first Nb11bf3226c68467fb91163e387fb16c7
65 rdf:rest N8e6a79a13b1442a591d300be62b50b03
66 Nf4e9c8b334b644deb97969f242f76e8b schema:name dimensions_id
67 schema:value pub.1022565094
68 rdf:type schema:PropertyValue
69 Nf5937d9112a246d18fd697590538e623 rdf:first sg:person.014237243030.68
70 rdf:rest N805e9b5ad992425daf226db787faede4
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:person.010746007357.13 schema:affiliation https://www.grid.ac/institutes/grid.411620.0
78 schema:familyName Murakami
79 schema:givenName Kazuhito
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010746007357.13
81 rdf:type schema:Person
82 sg:person.012525522563.85 schema:affiliation https://www.grid.ac/institutes/grid.411620.0
83 schema:familyName Koshimizu
84 schema:givenName Hiroyasu
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525522563.85
86 rdf:type schema:Person
87 sg:person.014027322375.36 schema:affiliation https://www.grid.ac/institutes/grid.256342.4
88 schema:familyName Kato
89 schema:givenName Kunihito
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014027322375.36
91 rdf:type schema:Person
92 sg:person.014237243030.68 schema:affiliation N5031132f1e4544398d1f73d84e75a04b
93 schema:familyName Endoh
94 schema:givenName Toshio
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237243030.68
96 rdf:type schema:Person
97 sg:person.016354526525.43 schema:affiliation https://www.grid.ac/institutes/grid.411620.0
98 schema:familyName Hayashi
99 schema:givenName Jun-ichiro
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354526525.43
101 rdf:type schema:Person
102 sg:person.07353046357.83 schema:affiliation N0f594eb9316341f697ef9ae2d2e33092
103 schema:familyName Toriu
104 schema:givenName Takashi
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07353046357.83
106 rdf:type schema:Person
107 https://www.grid.ac/institutes/grid.256342.4 schema:alternateName Gifu University
108 schema:name Faculty of Engineering, Gifu Univ., 1-1 Yanagido, 501-11 Gifu, Japan
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.411620.0 schema:alternateName Chukyo University
111 schema:name School of Computer and Cognitive Sciences, Chukyo Univ., 101 Tokodate, 470-03 Kaizucho, Toyota, Japan
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...