Learning the syntax and semantic rules of an ECG grammar View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Gabriella Kókai , János Csirik , Tibor Gyimóthy

ABSTRACT

In this paper a learning system is presented that is able to learn both the syntax (from an over-generalized grammar) and semantic rules (containing threshold values and relations) of an ECG grammar. These rules are used to direct the classification of QRS complexes and to distinquish between QRS and non-QRS patterns. The system demonstrates how a theory revision method can be used to refine large Prolog programs. 1 More... »

PAGES

171-182

References to SciGraph publications

  • 1997. Analyzing and learning ECG waveforms in INDUCTIVE LOGIC PROGRAMMING
  • 1997. Application of inductive logic programming for learning ECG waveforms in ARTIFICIAL INTELLIGENCE IN MEDICINE
  • Book

    TITLE

    AI*IA 97: Advances in Artificial Intelligence

    ISBN

    978-3-540-63576-5
    978-3-540-69601-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/3-540-63576-9_106

    DOI

    http://dx.doi.org/10.1007/3-540-63576-9_106

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007015749


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Specialist Studies In Education", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/13", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Education", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Szeged", 
              "id": "https://www.grid.ac/institutes/grid.9008.1", 
              "name": [
                "Institute of Informatics, J\u00f3zsef Attila University, \u00c1p\u00e1d t\u00e9r 2, H-6720\u00a0Szeged, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u00f3kai", 
            "givenName": "Gabriella", 
            "id": "sg:person.013264755104.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264755104.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Szeged", 
              "id": "https://www.grid.ac/institutes/grid.9008.1", 
              "name": [
                "Department of Computer Science, J\u00f3zsef Attila University, \u00c1rp\u00e1d t\u00e9r 2, H-6720\u00a0Szeged, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Csirik", 
            "givenName": "J\u00e1nos", 
            "id": "sg:person.077474335.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.077474335.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hungarian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.5018.c", 
              "name": [
                "Research Group on Artificial Intelligence, Hungarian Academy of Sciences, Aradi v\u00e9rtanuk tere 1, H-6720\u00a0Szeged, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gyim\u00f3thy", 
            "givenName": "Tibor", 
            "id": "sg:person.015362154015.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015362154015.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0743-1066(94)90035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002893202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-63494-0_52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006289068", 
              "https://doi.org/10.1007/3-540-63494-0_52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/62959.62964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009705526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(80)90003-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016856468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0004-3702(80)90003-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016856468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0029443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048546298", 
              "https://doi.org/10.1007/bfb0029443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812814913_0018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088779156"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997", 
        "datePublishedReg": "1997-01-01", 
        "description": "In this paper a learning system is presented that is able to learn both the syntax (from an over-generalized grammar) and semantic rules (containing threshold values and relations) of an ECG grammar. These rules are used to direct the classification of QRS complexes and to distinquish between QRS and non-QRS patterns. The system demonstrates how a theory revision method can be used to refine large Prolog programs. 1", 
        "editor": [
          {
            "familyName": "Lenzerini", 
            "givenName": "Maurizio", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/3-540-63576-9_106", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-63576-5", 
            "978-3-540-69601-8"
          ], 
          "name": "AI*IA 97: Advances in Artificial Intelligence", 
          "type": "Book"
        }, 
        "name": "Learning the syntax and semantic rules of an ECG grammar", 
        "pagination": "171-182", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/3-540-63576-9_106"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "216b9f6d905da34f6a5a4982d896942990436a061cb10ce0795c893caf35de68"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007015749"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/3-540-63576-9_106", 
          "https://app.dimensions.ai/details/publication/pub.1007015749"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T18:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000556.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/3-540-63576-9_106"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-63576-9_106'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-63576-9_106'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-63576-9_106'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-63576-9_106'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/3-540-63576-9_106 schema:about anzsrc-for:13
    2 anzsrc-for:1303
    3 schema:author N0b2cdac625d944e795b43ce4151da598
    4 schema:citation sg:pub.10.1007/3-540-63494-0_52
    5 sg:pub.10.1007/bfb0029443
    6 https://doi.org/10.1016/0004-3702(80)90003-x
    7 https://doi.org/10.1016/0743-1066(94)90035-3
    8 https://doi.org/10.1142/9789812814913_0018
    9 https://doi.org/10.1145/62959.62964
    10 schema:datePublished 1997
    11 schema:datePublishedReg 1997-01-01
    12 schema:description In this paper a learning system is presented that is able to learn both the syntax (from an over-generalized grammar) and semantic rules (containing threshold values and relations) of an ECG grammar. These rules are used to direct the classification of QRS complexes and to distinquish between QRS and non-QRS patterns. The system demonstrates how a theory revision method can be used to refine large Prolog programs. 1
    13 schema:editor Nd535c452523845b8b701ed7ed5298445
    14 schema:genre chapter
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf Nab995d4729f44873a3f4e89e7dbc04a2
    18 schema:name Learning the syntax and semantic rules of an ECG grammar
    19 schema:pagination 171-182
    20 schema:productId N34f179ebb1e54bb58fae3cb8b2b6ea38
    21 N82ecb6eed0be49fca9a190e6ff5cd485
    22 N9fbe6d2f4ac54443a5a0fb8df9bc3b98
    23 schema:publisher Nb84a773b1df64d15989e9ed5f2f90a90
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007015749
    25 https://doi.org/10.1007/3-540-63576-9_106
    26 schema:sdDatePublished 2019-04-15T18:46
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Nbd1e18f819954da5922407f05a88bda5
    29 schema:url http://link.springer.com/10.1007/3-540-63576-9_106
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset chapters
    32 rdf:type schema:Chapter
    33 N0b2cdac625d944e795b43ce4151da598 rdf:first sg:person.013264755104.81
    34 rdf:rest N6e77eebcc8084d75934c46ff35aa8cbf
    35 N34f179ebb1e54bb58fae3cb8b2b6ea38 schema:name dimensions_id
    36 schema:value pub.1007015749
    37 rdf:type schema:PropertyValue
    38 N6e77eebcc8084d75934c46ff35aa8cbf rdf:first sg:person.077474335.42
    39 rdf:rest Nd5c0fb60240c47cc8691bb71d3e39b74
    40 N82ecb6eed0be49fca9a190e6ff5cd485 schema:name doi
    41 schema:value 10.1007/3-540-63576-9_106
    42 rdf:type schema:PropertyValue
    43 N9fbe6d2f4ac54443a5a0fb8df9bc3b98 schema:name readcube_id
    44 schema:value 216b9f6d905da34f6a5a4982d896942990436a061cb10ce0795c893caf35de68
    45 rdf:type schema:PropertyValue
    46 Na0df47c4e26546d38a9a8375187c201d schema:familyName Lenzerini
    47 schema:givenName Maurizio
    48 rdf:type schema:Person
    49 Nab995d4729f44873a3f4e89e7dbc04a2 schema:isbn 978-3-540-63576-5
    50 978-3-540-69601-8
    51 schema:name AI*IA 97: Advances in Artificial Intelligence
    52 rdf:type schema:Book
    53 Nb84a773b1df64d15989e9ed5f2f90a90 schema:location Berlin, Heidelberg
    54 schema:name Springer Berlin Heidelberg
    55 rdf:type schema:Organisation
    56 Nbd1e18f819954da5922407f05a88bda5 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Nd535c452523845b8b701ed7ed5298445 rdf:first Na0df47c4e26546d38a9a8375187c201d
    59 rdf:rest rdf:nil
    60 Nd5c0fb60240c47cc8691bb71d3e39b74 rdf:first sg:person.015362154015.83
    61 rdf:rest rdf:nil
    62 anzsrc-for:13 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Education
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:1303 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Specialist Studies In Education
    67 rdf:type schema:DefinedTerm
    68 sg:person.013264755104.81 schema:affiliation https://www.grid.ac/institutes/grid.9008.1
    69 schema:familyName Kókai
    70 schema:givenName Gabriella
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264755104.81
    72 rdf:type schema:Person
    73 sg:person.015362154015.83 schema:affiliation https://www.grid.ac/institutes/grid.5018.c
    74 schema:familyName Gyimóthy
    75 schema:givenName Tibor
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015362154015.83
    77 rdf:type schema:Person
    78 sg:person.077474335.42 schema:affiliation https://www.grid.ac/institutes/grid.9008.1
    79 schema:familyName Csirik
    80 schema:givenName János
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.077474335.42
    82 rdf:type schema:Person
    83 sg:pub.10.1007/3-540-63494-0_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006289068
    84 https://doi.org/10.1007/3-540-63494-0_52
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bfb0029443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048546298
    87 https://doi.org/10.1007/bfb0029443
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/0004-3702(80)90003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016856468
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/0743-1066(94)90035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002893202
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1142/9789812814913_0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088779156
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1145/62959.62964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009705526
    96 rdf:type schema:CreativeWork
    97 https://www.grid.ac/institutes/grid.5018.c schema:alternateName Hungarian Academy of Sciences
    98 schema:name Research Group on Artificial Intelligence, Hungarian Academy of Sciences, Aradi vértanuk tere 1, H-6720 Szeged, Hungary
    99 rdf:type schema:Organization
    100 https://www.grid.ac/institutes/grid.9008.1 schema:alternateName University of Szeged
    101 schema:name Department of Computer Science, József Attila University, Árpád tér 2, H-6720 Szeged, Hungary
    102 Institute of Informatics, József Attila University, Ápád tér 2, H-6720 Szeged, Hungary
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...