Ontology type: schema:Chapter
1996
AUTHORSPhilip N. Klein , Hsueh-I Lu , Robert H. B. Netzer
ABSTRACTWe address a problem arising in debugging parallel programs, detecting race conditions in programs using semaphores for synchronization. It is NP-complete to detect race conditions in programs that use polynomial number of semaphores [10]. We show in this paper that it remains NP-complete even if the programs are allowed to use only two semaphores, which settles the open question raised in [10]. The proof uses a technique that simulates a graph with any number of semaphores by a graph with only two semaphores.For the case of single semaphore, Lu et al. [8] give the previously only-known polynomial-time algorithm that runs in time O(n1.5p), where p is the number of processors and n is the total number of semaphore operations executed. Their algorithm, however, detects only a special class of race conditions. In this paper we cope with the general race-condition detection problem and give an O(np log n) -time algorithm.The output of our algorithm is a compact representation of size Θ(np), from which one can determine in constant time whether a race condition exists between two given operations. Our algorithm is near-optimal in that the time it takes is only O(log n) times the time required simply to write down the output. More... »
PAGES445-459
Algorithms — ESA '96
ISBN
978-3-540-61680-1
978-3-540-70667-0
http://scigraph.springernature.com/pub.10.1007/3-540-61680-2_74
DOIhttp://dx.doi.org/10.1007/3-540-61680-2_74
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026455081
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Dept of Computer Science, Brown Univ., USA",
"id": "http://www.grid.ac/institutes/grid.40263.33",
"name": [
"Dept of Computer Science, Brown Univ., USA"
],
"type": "Organization"
},
"familyName": "Klein",
"givenName": "Philip N.",
"id": "sg:person.0701364100.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701364100.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Dept. of Computer Science & Information Engineering, National Chung-Cheng Univ., Taiwan",
"id": "http://www.grid.ac/institutes/grid.412047.4",
"name": [
"Dept of Computer Science, Brown Univ., USA",
"Dept. of Computer Science & Information Engineering, National Chung-Cheng Univ., Taiwan"
],
"type": "Organization"
},
"familyName": "Lu",
"givenName": "Hsueh-I",
"id": "sg:person.013345515575.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345515575.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Dept of Computer Science, Brown Univ., USA",
"id": "http://www.grid.ac/institutes/grid.40263.33",
"name": [
"Dept of Computer Science, Brown Univ., USA"
],
"type": "Organization"
},
"familyName": "Netzer",
"givenName": "Robert H. B.",
"id": "sg:person.015172024763.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015172024763.29"
],
"type": "Person"
}
],
"datePublished": "1996",
"datePublishedReg": "1996-01-01",
"description": "We address a problem arising in debugging parallel programs, detecting race conditions in programs using semaphores for synchronization. It is NP-complete to detect race conditions in programs that use polynomial number of semaphores [10]. We show in this paper that it remains NP-complete even if the programs are allowed to use only two semaphores, which settles the open question raised in [10]. The proof uses a technique that simulates a graph with any number of semaphores by a graph with only two semaphores.For the case of single semaphore, Lu et al. [8] give the previously only-known polynomial-time algorithm that runs in time O(n1.5p), where p is the number of processors and n is the total number of semaphore operations executed. Their algorithm, however, detects only a special class of race conditions. In this paper we cope with the general race-condition detection problem and give an O(np log n) -time algorithm.The output of our algorithm is a compact representation of size \u0398(np), from which one can determine in constant time whether a race condition exists between two given operations. Our algorithm is near-optimal in that the time it takes is only O(log n) times the time required simply to write down the output.",
"editor": [
{
"familyName": "Diaz",
"givenName": "Josep",
"type": "Person"
},
{
"familyName": "Serna",
"givenName": "Maria",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/3-540-61680-2_74",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-61680-1",
"978-3-540-70667-0"
],
"name": "Algorithms \u2014 ESA '96",
"type": "Book"
},
"keywords": [
"race conditions",
"number of processors",
"race condition detection",
"polynomial time algorithm",
"parallel programs",
"parallel computation",
"detection problem",
"compact representation",
"polynomial number",
"semaphores",
"Lu et al",
"time algorithm",
"semaphore operations",
"constant time",
"algorithm",
"graph",
"NPs",
"processors",
"special class",
"computation",
"operation",
"detects",
"synchronization",
"representation",
"open question",
"output",
"number",
"program",
"proof",
"time",
"detection",
"technique",
"class",
"one",
"et al",
"total number",
"questions",
"size",
"cases",
"conditions",
"al",
"problem",
"paper"
],
"name": "Race-condition detection in parallel computation with semaphores (extended abstract)",
"pagination": "445-459",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026455081"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/3-540-61680-2_74"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/3-540-61680-2_74",
"https://app.dimensions.ai/details/publication/pub.1026455081"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_189.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/3-540-61680-2_74"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-61680-2_74'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-61680-2_74'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-61680-2_74'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-61680-2_74'
This table displays all metadata directly associated to this object as RDF triples.
126 TRIPLES
23 PREDICATES
69 URIs
62 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/3-540-61680-2_74 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N634027f160ac496185a01f44569bacd3 |
4 | ″ | schema:datePublished | 1996 |
5 | ″ | schema:datePublishedReg | 1996-01-01 |
6 | ″ | schema:description | We address a problem arising in debugging parallel programs, detecting race conditions in programs using semaphores for synchronization. It is NP-complete to detect race conditions in programs that use polynomial number of semaphores [10]. We show in this paper that it remains NP-complete even if the programs are allowed to use only two semaphores, which settles the open question raised in [10]. The proof uses a technique that simulates a graph with any number of semaphores by a graph with only two semaphores.For the case of single semaphore, Lu et al. [8] give the previously only-known polynomial-time algorithm that runs in time O(n1.5p), where p is the number of processors and n is the total number of semaphore operations executed. Their algorithm, however, detects only a special class of race conditions. In this paper we cope with the general race-condition detection problem and give an O(np log n) -time algorithm.The output of our algorithm is a compact representation of size Θ(np), from which one can determine in constant time whether a race condition exists between two given operations. Our algorithm is near-optimal in that the time it takes is only O(log n) times the time required simply to write down the output. |
7 | ″ | schema:editor | Nf80cfcb580fe4c1fa2b0ff5af3ab1e05 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N58633f171c044801aae7fcdce114adb4 |
12 | ″ | schema:keywords | Lu et al |
13 | ″ | ″ | NPs |
14 | ″ | ″ | al |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | cases |
17 | ″ | ″ | class |
18 | ″ | ″ | compact representation |
19 | ″ | ″ | computation |
20 | ″ | ″ | conditions |
21 | ″ | ″ | constant time |
22 | ″ | ″ | detection |
23 | ″ | ″ | detection problem |
24 | ″ | ″ | detects |
25 | ″ | ″ | et al |
26 | ″ | ″ | graph |
27 | ″ | ″ | number |
28 | ″ | ″ | number of processors |
29 | ″ | ″ | one |
30 | ″ | ″ | open question |
31 | ″ | ″ | operation |
32 | ″ | ″ | output |
33 | ″ | ″ | paper |
34 | ″ | ″ | parallel computation |
35 | ″ | ″ | parallel programs |
36 | ″ | ″ | polynomial number |
37 | ″ | ″ | polynomial time algorithm |
38 | ″ | ″ | problem |
39 | ″ | ″ | processors |
40 | ″ | ″ | program |
41 | ″ | ″ | proof |
42 | ″ | ″ | questions |
43 | ″ | ″ | race condition detection |
44 | ″ | ″ | race conditions |
45 | ″ | ″ | representation |
46 | ″ | ″ | semaphore operations |
47 | ″ | ″ | semaphores |
48 | ″ | ″ | size |
49 | ″ | ″ | special class |
50 | ″ | ″ | synchronization |
51 | ″ | ″ | technique |
52 | ″ | ″ | time |
53 | ″ | ″ | time algorithm |
54 | ″ | ″ | total number |
55 | ″ | schema:name | Race-condition detection in parallel computation with semaphores (extended abstract) |
56 | ″ | schema:pagination | 445-459 |
57 | ″ | schema:productId | N085eb940346a497d840a86bd44717ea7 |
58 | ″ | ″ | N09d9112cd6334e328c177b7536450e4e |
59 | ″ | schema:publisher | N35e8b846273245e19b0ad5640f09fe9c |
60 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026455081 |
61 | ″ | ″ | https://doi.org/10.1007/3-540-61680-2_74 |
62 | ″ | schema:sdDatePublished | 2022-05-10T10:40 |
63 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
64 | ″ | schema:sdPublisher | N3f161b5300f04bb6a907a1f9676c2023 |
65 | ″ | schema:url | https://doi.org/10.1007/3-540-61680-2_74 |
66 | ″ | sgo:license | sg:explorer/license/ |
67 | ″ | sgo:sdDataset | chapters |
68 | ″ | rdf:type | schema:Chapter |
69 | N085eb940346a497d840a86bd44717ea7 | schema:name | doi |
70 | ″ | schema:value | 10.1007/3-540-61680-2_74 |
71 | ″ | rdf:type | schema:PropertyValue |
72 | N09d9112cd6334e328c177b7536450e4e | schema:name | dimensions_id |
73 | ″ | schema:value | pub.1026455081 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | N1babec2926c44cda9a6e9ff4da413da3 | rdf:first | sg:person.013345515575.46 |
76 | ″ | rdf:rest | N2b25f37d175040fd86955124c111965f |
77 | N271d1ae5b0af40a9b6f3164851396d8a | schema:familyName | Diaz |
78 | ″ | schema:givenName | Josep |
79 | ″ | rdf:type | schema:Person |
80 | N2b25f37d175040fd86955124c111965f | rdf:first | sg:person.015172024763.29 |
81 | ″ | rdf:rest | rdf:nil |
82 | N35e8b846273245e19b0ad5640f09fe9c | schema:name | Springer Nature |
83 | ″ | rdf:type | schema:Organisation |
84 | N3f161b5300f04bb6a907a1f9676c2023 | schema:name | Springer Nature - SN SciGraph project |
85 | ″ | rdf:type | schema:Organization |
86 | N4cf1e64a79264fe9bdd933fb9717e389 | schema:familyName | Serna |
87 | ″ | schema:givenName | Maria |
88 | ″ | rdf:type | schema:Person |
89 | N58633f171c044801aae7fcdce114adb4 | schema:isbn | 978-3-540-61680-1 |
90 | ″ | ″ | 978-3-540-70667-0 |
91 | ″ | schema:name | Algorithms — ESA '96 |
92 | ″ | rdf:type | schema:Book |
93 | N634027f160ac496185a01f44569bacd3 | rdf:first | sg:person.0701364100.14 |
94 | ″ | rdf:rest | N1babec2926c44cda9a6e9ff4da413da3 |
95 | Nc8d24a3d2ac541dc9ae33031ccdf456e | rdf:first | N4cf1e64a79264fe9bdd933fb9717e389 |
96 | ″ | rdf:rest | rdf:nil |
97 | Nf80cfcb580fe4c1fa2b0ff5af3ab1e05 | rdf:first | N271d1ae5b0af40a9b6f3164851396d8a |
98 | ″ | rdf:rest | Nc8d24a3d2ac541dc9ae33031ccdf456e |
99 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Information and Computing Sciences |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Computation Theory and Mathematics |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | sg:person.013345515575.46 | schema:affiliation | grid-institutes:grid.412047.4 |
106 | ″ | schema:familyName | Lu |
107 | ″ | schema:givenName | Hsueh-I |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345515575.46 |
109 | ″ | rdf:type | schema:Person |
110 | sg:person.015172024763.29 | schema:affiliation | grid-institutes:grid.40263.33 |
111 | ″ | schema:familyName | Netzer |
112 | ″ | schema:givenName | Robert H. B. |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015172024763.29 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.0701364100.14 | schema:affiliation | grid-institutes:grid.40263.33 |
116 | ″ | schema:familyName | Klein |
117 | ″ | schema:givenName | Philip N. |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701364100.14 |
119 | ″ | rdf:type | schema:Person |
120 | grid-institutes:grid.40263.33 | schema:alternateName | Dept of Computer Science, Brown Univ., USA |
121 | ″ | schema:name | Dept of Computer Science, Brown Univ., USA |
122 | ″ | rdf:type | schema:Organization |
123 | grid-institutes:grid.412047.4 | schema:alternateName | Dept. of Computer Science & Information Engineering, National Chung-Cheng Univ., Taiwan |
124 | ″ | schema:name | Dept of Computer Science, Brown Univ., USA |
125 | ″ | ″ | Dept. of Computer Science & Information Engineering, National Chung-Cheng Univ., Taiwan |
126 | ″ | rdf:type | schema:Organization |