Adaptive assessment using granularity hierarchies and bayesian nets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

Jason A. Collins , Jim E. Greer , Sherman X. Huang

ABSTRACT

Adaptive testing is impractical in real world situations where many different learner traits need to be measured in a single test. Recent student modelling approaches have attempted to solve this problem using different course representations along with sound knowledge propagation schemes. This paper shows that these different representations can be merged together and realized in a granularity hierarchy. Bayesian inference can be used to propagate knowledge throughout the hierarchy. This provides information for selecting appropriate test items and maintains a measure of the student's knowledge level. More... »

PAGES

569-577

Book

TITLE

Intelligent Tutoring Systems

ISBN

978-3-540-61327-5
978-3-540-68460-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-61327-7_156

DOI

http://dx.doi.org/10.1007/3-540-61327-7_156

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009278968


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "ARIES Laboratory, University of Saskatchewan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "Jason A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ARIES Laboratory, University of Saskatchewan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greer", 
        "givenName": "Jim E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alberta Innovates", 
          "id": "https://www.grid.ac/institutes/grid.488584.d", 
          "name": [
            "Alberta Research Council, Calgary, AB, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Sherman X.", 
        "id": "sg:person.013101113135.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101113135.08"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "Adaptive testing is impractical in real world situations where many different learner traits need to be measured in a single test. Recent student modelling approaches have attempted to solve this problem using different course representations along with sound knowledge propagation schemes. This paper shows that these different representations can be merged together and realized in a granularity hierarchy. Bayesian inference can be used to propagate knowledge throughout the hierarchy. This provides information for selecting appropriate test items and maintains a measure of the student's knowledge level.", 
    "editor": [
      {
        "familyName": "Frasson", 
        "givenName": "Claude", 
        "type": "Person"
      }, 
      {
        "familyName": "Gauthier", 
        "givenName": "Gilles", 
        "type": "Person"
      }, 
      {
        "familyName": "Lesgold", 
        "givenName": "Alan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-61327-7_156", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-61327-5", 
        "978-3-540-68460-2"
      ], 
      "name": "Intelligent Tutoring Systems", 
      "type": "Book"
    }, 
    "name": "Adaptive assessment using granularity hierarchies and bayesian nets", 
    "pagination": "569-577", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-61327-7_156"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c33979a20fbaa109d0d27a935444da0a6bd837c351806489c57525957a9f38c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009278968"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-61327-7_156", 
      "https://app.dimensions.ai/details/publication/pub.1009278968"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000015.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-61327-7_156"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-61327-7_156'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-61327-7_156'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-61327-7_156'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-61327-7_156'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-61327-7_156 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N1822aa237f9344b4b8eb9f7e16c3dd96
4 schema:datePublished 1996
5 schema:datePublishedReg 1996-01-01
6 schema:description Adaptive testing is impractical in real world situations where many different learner traits need to be measured in a single test. Recent student modelling approaches have attempted to solve this problem using different course representations along with sound knowledge propagation schemes. This paper shows that these different representations can be merged together and realized in a granularity hierarchy. Bayesian inference can be used to propagate knowledge throughout the hierarchy. This provides information for selecting appropriate test items and maintains a measure of the student's knowledge level.
7 schema:editor N49c1d4b48713478d946e846565ae6cd0
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd3d807562d0c459387ac70d9ab6cd949
12 schema:name Adaptive assessment using granularity hierarchies and bayesian nets
13 schema:pagination 569-577
14 schema:productId N66cdc7f416c642f5a5a541d9698a987a
15 N7154447b640c418a855f077c4afdcf07
16 Na1ddacc089c84b3080b0610e7a78d18b
17 schema:publisher N714429e19f124b87b077e42dac6a326d
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009278968
19 https://doi.org/10.1007/3-540-61327-7_156
20 schema:sdDatePublished 2019-04-15T14:09
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Na444d6fcdd62422489f2463cdbf9528f
23 schema:url http://link.springer.com/10.1007/3-540-61327-7_156
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N106a5658ea96445ba258a48f7ad42b6d schema:name ARIES Laboratory, University of Saskatchewan, USA
28 rdf:type schema:Organization
29 N1822aa237f9344b4b8eb9f7e16c3dd96 rdf:first N95303d2b9fc546b4a87e5054541e3eac
30 rdf:rest N624b12b82f174f56adb0d7ef2580f60f
31 N2a49702d8df744f082823f68f04ac828 rdf:first Nf756706b0e7342e389093aa91b9e6012
32 rdf:rest N47757039eca04ff686d1b2b19ed2f2d1
33 N47757039eca04ff686d1b2b19ed2f2d1 rdf:first Nd366036f80cd48cf9c7f382bae93f930
34 rdf:rest rdf:nil
35 N49c1d4b48713478d946e846565ae6cd0 rdf:first N6d0ca3f47b2d4ebeb2c3af86156fad08
36 rdf:rest N2a49702d8df744f082823f68f04ac828
37 N624b12b82f174f56adb0d7ef2580f60f rdf:first Nc008475d828846b5aec8764a7c2e8473
38 rdf:rest N6e355d3e5bfa4ce5ae293c42113391c3
39 N66cdc7f416c642f5a5a541d9698a987a schema:name dimensions_id
40 schema:value pub.1009278968
41 rdf:type schema:PropertyValue
42 N6d0ca3f47b2d4ebeb2c3af86156fad08 schema:familyName Frasson
43 schema:givenName Claude
44 rdf:type schema:Person
45 N6e355d3e5bfa4ce5ae293c42113391c3 rdf:first sg:person.013101113135.08
46 rdf:rest rdf:nil
47 N714429e19f124b87b077e42dac6a326d schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 N7154447b640c418a855f077c4afdcf07 schema:name readcube_id
51 schema:value 2c33979a20fbaa109d0d27a935444da0a6bd837c351806489c57525957a9f38c
52 rdf:type schema:PropertyValue
53 N95303d2b9fc546b4a87e5054541e3eac schema:affiliation Nb189ade2009440aba1c53572e08615d2
54 schema:familyName Collins
55 schema:givenName Jason A.
56 rdf:type schema:Person
57 Na1ddacc089c84b3080b0610e7a78d18b schema:name doi
58 schema:value 10.1007/3-540-61327-7_156
59 rdf:type schema:PropertyValue
60 Na444d6fcdd62422489f2463cdbf9528f schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nb189ade2009440aba1c53572e08615d2 schema:name ARIES Laboratory, University of Saskatchewan, USA
63 rdf:type schema:Organization
64 Nc008475d828846b5aec8764a7c2e8473 schema:affiliation N106a5658ea96445ba258a48f7ad42b6d
65 schema:familyName Greer
66 schema:givenName Jim E.
67 rdf:type schema:Person
68 Nd366036f80cd48cf9c7f382bae93f930 schema:familyName Lesgold
69 schema:givenName Alan
70 rdf:type schema:Person
71 Nd3d807562d0c459387ac70d9ab6cd949 schema:isbn 978-3-540-61327-5
72 978-3-540-68460-2
73 schema:name Intelligent Tutoring Systems
74 rdf:type schema:Book
75 Nf756706b0e7342e389093aa91b9e6012 schema:familyName Gauthier
76 schema:givenName Gilles
77 rdf:type schema:Person
78 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
79 schema:name Psychology and Cognitive Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
82 schema:name Psychology
83 rdf:type schema:DefinedTerm
84 sg:person.013101113135.08 schema:affiliation https://www.grid.ac/institutes/grid.488584.d
85 schema:familyName Huang
86 schema:givenName Sherman X.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101113135.08
88 rdf:type schema:Person
89 https://www.grid.ac/institutes/grid.488584.d schema:alternateName Alberta Innovates
90 schema:name Alberta Research Council, Calgary, AB, Canada
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...