Bidirectional reflection distribution function expressed in terms of surface scattering modes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

Jan J. Koenderink , Andrea J. van Doorn , Marigo Stavridi

ABSTRACT

In many applications one needs a concise description of the Bidirectional Reflection Distribution Function (BRDF) of real materials. Because the BRDF depends on two independent directions (thus has four degrees of freedom) one typically has only a relatively sparse set of observations. In order to be able to interpolate these sparse data in a convenient and principled manner a series development in terms of an orthonormal basis is required. The elements of the basis should be ordered with respect to angular resolution. Moreover, the basis should automatically respect the inherent symmetries of the physics, i.e., Helmholtz's reciprocity and (most often) surface isotropy. We indicate how to construct a set of orthonormal polynomials on the Cartesian product of the hemisphere with itself with the required symmetry and invariance properties. These “surface scattering modes” form a convenient basis for the description of BRDF's. More... »

PAGES

28-39

Book

TITLE

Computer Vision — ECCV '96

ISBN

978-3-540-61123-3
978-3-540-49950-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-61123-1_125

DOI

http://dx.doi.org/10.1007/3-540-61123-1_125

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040860226


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, PO Box 80 000, 3508, TA Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, PO Box 80 000, 3508, TA Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koenderink", 
        "givenName": "Jan J.", 
        "id": "sg:person.01025667406.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025667406.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, PO Box 80 000, 3508, TA Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, PO Box 80 000, 3508, TA Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Doorn", 
        "givenName": "Andrea J.", 
        "id": "sg:person.01033643477.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033643477.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, PO Box 80 000, 3508, TA Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, PO Box 80 000, 3508, TA Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stavridi", 
        "givenName": "Marigo", 
        "id": "sg:person.013627547413.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627547413.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "In many applications one needs a concise description of the Bidirectional Reflection Distribution Function (BRDF) of real materials. Because the BRDF depends on two independent directions (thus has four degrees of freedom) one typically has only a relatively sparse set of observations. In order to be able to interpolate these sparse data in a convenient and principled manner a series development in terms of an orthonormal basis is required. The elements of the basis should be ordered with respect to angular resolution. Moreover, the basis should automatically respect the inherent symmetries of the physics, i.e., Helmholtz's reciprocity and (most often) surface isotropy. We indicate how to construct a set of orthonormal polynomials on the Cartesian product of the hemisphere with itself with the required symmetry and invariance properties. These \u201csurface scattering modes\u201d form a convenient basis for the description of BRDF's.", 
    "editor": [
      {
        "familyName": "Buxton", 
        "givenName": "Bernard", 
        "type": "Person"
      }, 
      {
        "familyName": "Cipolla", 
        "givenName": "Roberto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-61123-1_125", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-61123-3", 
        "978-3-540-49950-3"
      ], 
      "name": "Computer Vision \u2014 ECCV '96", 
      "type": "Book"
    }, 
    "keywords": [
      "bidirectional reflection distribution function", 
      "reflection distribution function", 
      "distribution function", 
      "invariance properties", 
      "orthonormal basis", 
      "angular resolution", 
      "Cartesian product", 
      "real materials", 
      "inherent symmetry", 
      "orthonormal polynomials", 
      "series development", 
      "convenient basis", 
      "sparse set", 
      "principled manner", 
      "symmetry", 
      "sparse data", 
      "terms of surface", 
      "concise description", 
      "physics", 
      "polynomials", 
      "direction one", 
      "description", 
      "set", 
      "terms", 
      "function", 
      "mode", 
      "BRDF", 
      "applications", 
      "properties", 
      "one", 
      "basis", 
      "order", 
      "respect", 
      "surface", 
      "observations", 
      "resolution", 
      "reciprocity", 
      "elements", 
      "data", 
      "materials", 
      "manner", 
      "hemisphere", 
      "products", 
      "development", 
      "Helmholtz reciprocity"
    ], 
    "name": "Bidirectional reflection distribution function expressed in terms of surface scattering modes", 
    "pagination": "28-39", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040860226"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-61123-1_125"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-61123-1_125", 
      "https://app.dimensions.ai/details/publication/pub.1040860226"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_350.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-61123-1_125"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-61123-1_125'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-61123-1_125'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-61123-1_125'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-61123-1_125'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      22 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-61123-1_125 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7cd001ce68a643a2961aec073bfa87d7
4 schema:datePublished 1996
5 schema:datePublishedReg 1996-01-01
6 schema:description In many applications one needs a concise description of the Bidirectional Reflection Distribution Function (BRDF) of real materials. Because the BRDF depends on two independent directions (thus has four degrees of freedom) one typically has only a relatively sparse set of observations. In order to be able to interpolate these sparse data in a convenient and principled manner a series development in terms of an orthonormal basis is required. The elements of the basis should be ordered with respect to angular resolution. Moreover, the basis should automatically respect the inherent symmetries of the physics, i.e., Helmholtz's reciprocity and (most often) surface isotropy. We indicate how to construct a set of orthonormal polynomials on the Cartesian product of the hemisphere with itself with the required symmetry and invariance properties. These “surface scattering modes” form a convenient basis for the description of BRDF's.
7 schema:editor Nd122349fee6f47458b46612f36c408f6
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nfa5e3903f5e549ebb6fbbf57a728ae38
11 schema:keywords BRDF
12 Cartesian product
13 Helmholtz reciprocity
14 angular resolution
15 applications
16 basis
17 bidirectional reflection distribution function
18 concise description
19 convenient basis
20 data
21 description
22 development
23 direction one
24 distribution function
25 elements
26 function
27 hemisphere
28 inherent symmetry
29 invariance properties
30 manner
31 materials
32 mode
33 observations
34 one
35 order
36 orthonormal basis
37 orthonormal polynomials
38 physics
39 polynomials
40 principled manner
41 products
42 properties
43 real materials
44 reciprocity
45 reflection distribution function
46 resolution
47 respect
48 series development
49 set
50 sparse data
51 sparse set
52 surface
53 symmetry
54 terms
55 terms of surface
56 schema:name Bidirectional reflection distribution function expressed in terms of surface scattering modes
57 schema:pagination 28-39
58 schema:productId N5acf2319e1a9431bb434c6b8d5ed1882
59 Ne762c3ecefc14b2b8ed19c41c858108e
60 schema:publisher N642dd46ad16c4688a18cffca8d99d553
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040860226
62 https://doi.org/10.1007/3-540-61123-1_125
63 schema:sdDatePublished 2022-12-01T06:52
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N396606d61d2040db8e24aecbd43ef6de
66 schema:url https://doi.org/10.1007/3-540-61123-1_125
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N2fdaa5b5f910445f9f109a06653291be schema:familyName Buxton
71 schema:givenName Bernard
72 rdf:type schema:Person
73 N38d8b54d111d4df6be6fec059922d7dd schema:familyName Cipolla
74 schema:givenName Roberto
75 rdf:type schema:Person
76 N396606d61d2040db8e24aecbd43ef6de schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N5acf2319e1a9431bb434c6b8d5ed1882 schema:name doi
79 schema:value 10.1007/3-540-61123-1_125
80 rdf:type schema:PropertyValue
81 N642dd46ad16c4688a18cffca8d99d553 schema:name Springer Nature
82 rdf:type schema:Organisation
83 N76d6477bf6a340128a3d82ede1729619 rdf:first sg:person.01033643477.59
84 rdf:rest N8f64805e7c324404a8958faf3b53e80d
85 N7cd001ce68a643a2961aec073bfa87d7 rdf:first sg:person.01025667406.88
86 rdf:rest N76d6477bf6a340128a3d82ede1729619
87 N8f64805e7c324404a8958faf3b53e80d rdf:first sg:person.013627547413.34
88 rdf:rest rdf:nil
89 N99d57a643d0843f49c03e30e5114150e rdf:first N38d8b54d111d4df6be6fec059922d7dd
90 rdf:rest rdf:nil
91 Nd122349fee6f47458b46612f36c408f6 rdf:first N2fdaa5b5f910445f9f109a06653291be
92 rdf:rest N99d57a643d0843f49c03e30e5114150e
93 Ne762c3ecefc14b2b8ed19c41c858108e schema:name dimensions_id
94 schema:value pub.1040860226
95 rdf:type schema:PropertyValue
96 Nfa5e3903f5e549ebb6fbbf57a728ae38 schema:isbn 978-3-540-49950-3
97 978-3-540-61123-3
98 schema:name Computer Vision — ECCV '96
99 rdf:type schema:Book
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
104 schema:name Materials Engineering
105 rdf:type schema:DefinedTerm
106 sg:person.01025667406.88 schema:affiliation grid-institutes:grid.5477.1
107 schema:familyName Koenderink
108 schema:givenName Jan J.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025667406.88
110 rdf:type schema:Person
111 sg:person.01033643477.59 schema:affiliation grid-institutes:grid.5477.1
112 schema:familyName van Doorn
113 schema:givenName Andrea J.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033643477.59
115 rdf:type schema:Person
116 sg:person.013627547413.34 schema:affiliation grid-institutes:grid.5477.1
117 schema:familyName Stavridi
118 schema:givenName Marigo
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627547413.34
120 rdf:type schema:Person
121 grid-institutes:grid.5477.1 schema:alternateName Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, PO Box 80 000, 3508, TA Utrecht, The Netherlands
122 schema:name Helmholtz Instituut, Universiteit Utrecht, Princetonplein 5, PO Box 80 000, 3508, TA Utrecht, The Netherlands
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...