From physics-based representation to functional modeling of highly complex objects View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

Demetri Terzopoulos

ABSTRACT

The physics-based modeling paradigm augments standard geometric representations with the principles of physical dynamics. It yields powerful models that unify the representation of object shape (geometry) and motion (dynamics) within a single computational framework. Thus, physics-based object representation transforms abstract geometry into real world, object-oriented Geometry++ with potentially enormous benefits for computer vision. In this paper, I will first review some of the physics-based models for vision that we have developed in recent years, including deformable models, physics-based recursive estimators, and dynamic splines, plus some applications to medical image analysis and CAGD. I will then preview a promising future direction for the physics-based modeling approach — the functional simulation of complex, living things and the use of sophisticated models of animals as virtual robots for the synthesis of active vision systems. More... »

PAGES

347-359

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-60477-4_24

DOI

http://dx.doi.org/10.1007/3-540-60477-4_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003750000


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Toronto, 10 King's College Road, M5S 1A4, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Computer Science, University of Toronto, 10 King's College Road, M5S 1A4, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "The physics-based modeling paradigm augments standard geometric representations with the principles of physical dynamics. It yields powerful models that unify the representation of object shape (geometry) and motion (dynamics) within a single computational framework. Thus, physics-based object representation transforms abstract geometry into real world, object-oriented Geometry++ with potentially enormous benefits for computer vision. In this paper, I will first review some of the physics-based models for vision that we have developed in recent years, including deformable models, physics-based recursive estimators, and dynamic splines, plus some applications to medical image analysis and CAGD. I will then preview a promising future direction for the physics-based modeling approach \u2014 the functional simulation of complex, living things and the use of sophisticated models of animals as virtual robots for the synthesis of active vision systems.", 
    "editor": [
      {
        "familyName": "Hebert", 
        "givenName": "Martial", 
        "type": "Person"
      }, 
      {
        "familyName": "Ponce", 
        "givenName": "Jean", 
        "type": "Person"
      }, 
      {
        "familyName": "Boult", 
        "givenName": "Terry", 
        "type": "Person"
      }, 
      {
        "familyName": "Gross", 
        "givenName": "Ari", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-60477-4_24", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-60477-8", 
        "978-3-540-47526-2"
      ], 
      "name": "Object Representation in Computer Vision", 
      "type": "Book"
    }, 
    "keywords": [
      "physics-based modeling paradigm", 
      "medical image analysis", 
      "active vision system", 
      "standard geometric representation", 
      "virtual robot", 
      "computer vision", 
      "physics-based representation", 
      "single computational framework", 
      "vision system", 
      "complex objects", 
      "modeling paradigm", 
      "deformable model", 
      "functional simulation", 
      "real world", 
      "object shape", 
      "recursive estimator", 
      "computational framework", 
      "object representations", 
      "dynamic splines", 
      "geometric representation", 
      "promising future directions", 
      "physics-based model", 
      "abstract geometry", 
      "image analysis", 
      "physical dynamics", 
      "functional modeling", 
      "representation", 
      "enormous benefits", 
      "sophisticated models", 
      "powerful model", 
      "vision", 
      "robot", 
      "recent years", 
      "CAGD", 
      "objects", 
      "estimator", 
      "splines", 
      "model", 
      "framework", 
      "things", 
      "paradigm", 
      "future directions", 
      "applications", 
      "modeling", 
      "dynamics", 
      "geometry", 
      "simulations", 
      "system", 
      "motion", 
      "approach", 
      "principles", 
      "world", 
      "benefits", 
      "use", 
      "direction", 
      "analysis", 
      "shape", 
      "years", 
      "synthesis", 
      "complexes", 
      "animals", 
      "paper", 
      "physics-based object representation", 
      "physics-based recursive estimators"
    ], 
    "name": "From physics-based representation to functional modeling of highly complex objects", 
    "pagination": "347-359", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003750000"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-60477-4_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-60477-4_24", 
      "https://app.dimensions.ai/details/publication/pub.1003750000"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_196.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-60477-4_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-60477-4_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-60477-4_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-60477-4_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-60477-4_24'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      23 PREDICATES      92 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-60477-4_24 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:08
4 anzsrc-for:0801
5 schema:author N8aa314b86c40407f906d0baef09c936c
6 schema:datePublished 1995
7 schema:datePublishedReg 1995-01-01
8 schema:description The physics-based modeling paradigm augments standard geometric representations with the principles of physical dynamics. It yields powerful models that unify the representation of object shape (geometry) and motion (dynamics) within a single computational framework. Thus, physics-based object representation transforms abstract geometry into real world, object-oriented Geometry++ with potentially enormous benefits for computer vision. In this paper, I will first review some of the physics-based models for vision that we have developed in recent years, including deformable models, physics-based recursive estimators, and dynamic splines, plus some applications to medical image analysis and CAGD. I will then preview a promising future direction for the physics-based modeling approach — the functional simulation of complex, living things and the use of sophisticated models of animals as virtual robots for the synthesis of active vision systems.
9 schema:editor Ndd06cd22cddb4481acadffa94943c643
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N5672234a2a4b447793f7c7e0777deb2f
14 schema:keywords CAGD
15 abstract geometry
16 active vision system
17 analysis
18 animals
19 applications
20 approach
21 benefits
22 complex objects
23 complexes
24 computational framework
25 computer vision
26 deformable model
27 direction
28 dynamic splines
29 dynamics
30 enormous benefits
31 estimator
32 framework
33 functional modeling
34 functional simulation
35 future directions
36 geometric representation
37 geometry
38 image analysis
39 medical image analysis
40 model
41 modeling
42 modeling paradigm
43 motion
44 object representations
45 object shape
46 objects
47 paper
48 paradigm
49 physical dynamics
50 physics-based model
51 physics-based modeling paradigm
52 physics-based object representation
53 physics-based recursive estimators
54 physics-based representation
55 powerful model
56 principles
57 promising future directions
58 real world
59 recent years
60 recursive estimator
61 representation
62 robot
63 shape
64 simulations
65 single computational framework
66 sophisticated models
67 splines
68 standard geometric representation
69 synthesis
70 system
71 things
72 use
73 virtual robot
74 vision
75 vision system
76 world
77 years
78 schema:name From physics-based representation to functional modeling of highly complex objects
79 schema:pagination 347-359
80 schema:productId N1dbd3cfbc9d7481d8407c7bfcc57eb6e
81 N4c8f98607c9e473e89e17170fe9c8cb6
82 schema:publisher Nf256fbc5d90d4912847be8cb83b2999b
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003750000
84 https://doi.org/10.1007/3-540-60477-4_24
85 schema:sdDatePublished 2022-01-01T19:11
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Nccb810f691e44278adcddd62e756449c
88 schema:url https://doi.org/10.1007/3-540-60477-4_24
89 sgo:license sg:explorer/license/
90 sgo:sdDataset chapters
91 rdf:type schema:Chapter
92 N1dbd3cfbc9d7481d8407c7bfcc57eb6e schema:name dimensions_id
93 schema:value pub.1003750000
94 rdf:type schema:PropertyValue
95 N2f04accc6eac498183611478d00e54d7 rdf:first Na2150b28807b44ca937751ed41c35e55
96 rdf:rest rdf:nil
97 N4c8f98607c9e473e89e17170fe9c8cb6 schema:name doi
98 schema:value 10.1007/3-540-60477-4_24
99 rdf:type schema:PropertyValue
100 N5672234a2a4b447793f7c7e0777deb2f schema:isbn 978-3-540-47526-2
101 978-3-540-60477-8
102 schema:name Object Representation in Computer Vision
103 rdf:type schema:Book
104 N6072a9cea68942b3a3d3533b4a9b97f9 schema:familyName Hebert
105 schema:givenName Martial
106 rdf:type schema:Person
107 N68b498e3bbc84a0badec94b1fdb4e75c rdf:first N950a63c038054e6ca5c31a5fabf4074a
108 rdf:rest Ncf147bdf02b0412588abcfbd44b51b55
109 N8aa314b86c40407f906d0baef09c936c rdf:first sg:person.016347323445.35
110 rdf:rest rdf:nil
111 N950a63c038054e6ca5c31a5fabf4074a schema:familyName Ponce
112 schema:givenName Jean
113 rdf:type schema:Person
114 N97d963bf1bd14060becf9a9c7bc4a8eb schema:familyName Boult
115 schema:givenName Terry
116 rdf:type schema:Person
117 Na2150b28807b44ca937751ed41c35e55 schema:familyName Gross
118 schema:givenName Ari
119 rdf:type schema:Person
120 Nccb810f691e44278adcddd62e756449c schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Ncf147bdf02b0412588abcfbd44b51b55 rdf:first N97d963bf1bd14060becf9a9c7bc4a8eb
123 rdf:rest N2f04accc6eac498183611478d00e54d7
124 Ndd06cd22cddb4481acadffa94943c643 rdf:first N6072a9cea68942b3a3d3533b4a9b97f9
125 rdf:rest N68b498e3bbc84a0badec94b1fdb4e75c
126 Nf256fbc5d90d4912847be8cb83b2999b schema:name Springer Nature
127 rdf:type schema:Organisation
128 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
129 schema:name Mathematical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
132 schema:name Pure Mathematics
133 rdf:type schema:DefinedTerm
134 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information and Computing Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
138 schema:name Artificial Intelligence and Image Processing
139 rdf:type schema:DefinedTerm
140 sg:person.016347323445.35 schema:affiliation grid-institutes:grid.17063.33
141 schema:familyName Terzopoulos
142 schema:givenName Demetri
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
144 rdf:type schema:Person
145 grid-institutes:grid.17063.33 schema:alternateName Department of Computer Science, University of Toronto, 10 King's College Road, M5S 1A4, Toronto, ON, Canada
146 schema:name Department of Computer Science, University of Toronto, 10 King's College Road, M5S 1A4, Toronto, ON, Canada
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...