A neural network model for the velocity vector of an object and its consistency with psychological phenomena View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

Ken-ichiro Miura , Takashi Nagano

ABSTRACT

A biologically plausible neural network model is proposed that can detect the actual velocity vector of an object by using local motion signals detected by many local motion detectors. First, the computational theory to find the actual velocity vector of a rigid object correctly is described. Then a neural network is shown that implements the theory. The neural network model is constructed by two layers: a local velocity vector extraction layer and an integration layer. Many velocity vectors of points on a moving object are detected by local detectors in the local velocity vector extraction layer. Then these local velocity vectors are integrated in integration layer in order to obtain the actual velocity vector of the object. The computational processing pathway of the proposed model is well fit to the motion processing path of visual stimulus in the actual nervous system (from LGN to MT via V1). We also show the model can explain motion perceptual phenomena in the case where a moving stimulus is observed through an aperture. More... »

PAGES

589-596

Book

TITLE

From Natural to Artificial Neural Computation

ISBN

978-3-540-59497-0
978-3-540-49288-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-59497-3_226

DOI

http://dx.doi.org/10.1007/3-540-59497-3_226

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010059872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei, 184\u00a0Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miura", 
        "givenName": "Ken-ichiro", 
        "id": "sg:person.01135752122.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135752122.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei, 184\u00a0Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagano", 
        "givenName": "Takashi", 
        "id": "sg:person.01034442456.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/337734a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005254759", 
          "https://doi.org/10.1038/337734a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(87)90107-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016758817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(87)90107-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016758817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/300523a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036221690", 
          "https://doi.org/10.1038/300523a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00274887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040688784", 
          "https://doi.org/10.1007/bf00274887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00274887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040688784", 
          "https://doi.org/10.1007/bf00274887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00224859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043342679", 
          "https://doi.org/10.1007/bf00224859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00224859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043342679", 
          "https://doi.org/10.1007/bf00224859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1965.sp007638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046300786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(90)90045-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046399255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(90)90045-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046399255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1959.sp006308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047763294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/p140105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058162695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/p140105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058162695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1983.49.5.1127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081999661"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "A biologically plausible neural network model is proposed that can detect the actual velocity vector of an object by using local motion signals detected by many local motion detectors. First, the computational theory to find the actual velocity vector of a rigid object correctly is described. Then a neural network is shown that implements the theory. The neural network model is constructed by two layers: a local velocity vector extraction layer and an integration layer. Many velocity vectors of points on a moving object are detected by local detectors in the local velocity vector extraction layer. Then these local velocity vectors are integrated in integration layer in order to obtain the actual velocity vector of the object. The computational processing pathway of the proposed model is well fit to the motion processing path of visual stimulus in the actual nervous system (from LGN to MT via V1). We also show the model can explain motion perceptual phenomena in the case where a moving stimulus is observed through an aperture.", 
    "editor": [
      {
        "familyName": "Mira", 
        "givenName": "Jos\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Sandoval", 
        "givenName": "Francisco", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-59497-3_226", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-59497-0", 
        "978-3-540-49288-7"
      ], 
      "name": "From Natural to Artificial Neural Computation", 
      "type": "Book"
    }, 
    "name": "A neural network model for the velocity vector of an object and its consistency with psychological phenomena", 
    "pagination": "589-596", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-59497-3_226"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2fed1030116d66f1b81db14d0134b5438fb8068bac64ac3779bc59bbbdfeb841"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010059872"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-59497-3_226", 
      "https://app.dimensions.ai/details/publication/pub.1010059872"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000017.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-59497-3_226"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-59497-3_226'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-59497-3_226'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-59497-3_226'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-59497-3_226'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-59497-3_226 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N0b3d00e662cc4d4392d5acfa96393fe1
4 schema:citation sg:pub.10.1007/bf00224859
5 sg:pub.10.1007/bf00274887
6 sg:pub.10.1038/300523a0
7 sg:pub.10.1038/337734a0
8 https://doi.org/10.1016/0042-6989(87)90107-6
9 https://doi.org/10.1016/0893-6080(90)90045-m
10 https://doi.org/10.1068/p140105
11 https://doi.org/10.1113/jphysiol.1959.sp006308
12 https://doi.org/10.1113/jphysiol.1965.sp007638
13 https://doi.org/10.1152/jn.1983.49.5.1127
14 schema:datePublished 1995
15 schema:datePublishedReg 1995-01-01
16 schema:description A biologically plausible neural network model is proposed that can detect the actual velocity vector of an object by using local motion signals detected by many local motion detectors. First, the computational theory to find the actual velocity vector of a rigid object correctly is described. Then a neural network is shown that implements the theory. The neural network model is constructed by two layers: a local velocity vector extraction layer and an integration layer. Many velocity vectors of points on a moving object are detected by local detectors in the local velocity vector extraction layer. Then these local velocity vectors are integrated in integration layer in order to obtain the actual velocity vector of the object. The computational processing pathway of the proposed model is well fit to the motion processing path of visual stimulus in the actual nervous system (from LGN to MT via V1). We also show the model can explain motion perceptual phenomena in the case where a moving stimulus is observed through an aperture.
17 schema:editor Nd2479e6f8f324586bfdc1c87c0d2566f
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N1d4806ccf8f6445691431d72d8739984
22 schema:name A neural network model for the velocity vector of an object and its consistency with psychological phenomena
23 schema:pagination 589-596
24 schema:productId N0af5da06c98542fb8216ec9ecdce37f5
25 N28a5317b828b4f3fbb33f275b0d2d2bd
26 N45389b35cf2844d182871cb267590d3c
27 schema:publisher N76ce3d4d09ff4df2bfacaa14f9db9264
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010059872
29 https://doi.org/10.1007/3-540-59497-3_226
30 schema:sdDatePublished 2019-04-15T10:17
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nb4f6b3fe88de4d76b4871c8659c7968d
33 schema:url http://link.springer.com/10.1007/3-540-59497-3_226
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N0af5da06c98542fb8216ec9ecdce37f5 schema:name doi
38 schema:value 10.1007/3-540-59497-3_226
39 rdf:type schema:PropertyValue
40 N0b3d00e662cc4d4392d5acfa96393fe1 rdf:first sg:person.01135752122.35
41 rdf:rest Ne2e402bed4be47b4ae4527e52fee8bee
42 N1d4806ccf8f6445691431d72d8739984 schema:isbn 978-3-540-49288-7
43 978-3-540-59497-0
44 schema:name From Natural to Artificial Neural Computation
45 rdf:type schema:Book
46 N27cee91849f140d0bb3e05cd571553ef schema:familyName Mira
47 schema:givenName José
48 rdf:type schema:Person
49 N28a5317b828b4f3fbb33f275b0d2d2bd schema:name dimensions_id
50 schema:value pub.1010059872
51 rdf:type schema:PropertyValue
52 N45389b35cf2844d182871cb267590d3c schema:name readcube_id
53 schema:value 2fed1030116d66f1b81db14d0134b5438fb8068bac64ac3779bc59bbbdfeb841
54 rdf:type schema:PropertyValue
55 N76ce3d4d09ff4df2bfacaa14f9db9264 schema:location Berlin, Heidelberg
56 schema:name Springer Berlin Heidelberg
57 rdf:type schema:Organisation
58 Nb4f6b3fe88de4d76b4871c8659c7968d schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nd2479e6f8f324586bfdc1c87c0d2566f rdf:first N27cee91849f140d0bb3e05cd571553ef
61 rdf:rest Ne5b9dcfa77234d7abad95ac4addc839f
62 Nd8ece89d33ed4ff78171d8f4c74cb820 schema:familyName Sandoval
63 schema:givenName Francisco
64 rdf:type schema:Person
65 Ne2e402bed4be47b4ae4527e52fee8bee rdf:first sg:person.01034442456.31
66 rdf:rest rdf:nil
67 Ne5b9dcfa77234d7abad95ac4addc839f rdf:first Nd8ece89d33ed4ff78171d8f4c74cb820
68 rdf:rest rdf:nil
69 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
70 schema:name Psychology and Cognitive Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
73 schema:name Psychology
74 rdf:type schema:DefinedTerm
75 sg:person.01034442456.31 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
76 schema:familyName Nagano
77 schema:givenName Takashi
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31
79 rdf:type schema:Person
80 sg:person.01135752122.35 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
81 schema:familyName Miura
82 schema:givenName Ken-ichiro
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135752122.35
84 rdf:type schema:Person
85 sg:pub.10.1007/bf00224859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043342679
86 https://doi.org/10.1007/bf00224859
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf00274887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040688784
89 https://doi.org/10.1007/bf00274887
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/300523a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036221690
92 https://doi.org/10.1038/300523a0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/337734a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005254759
95 https://doi.org/10.1038/337734a0
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0042-6989(87)90107-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016758817
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0893-6080(90)90045-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1046399255
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1068/p140105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058162695
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1113/jphysiol.1959.sp006308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047763294
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1113/jphysiol.1965.sp007638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046300786
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1152/jn.1983.49.5.1127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081999661
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.257114.4 schema:alternateName Hosei University
110 schema:name College of Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei, 184 Tokyo, Japan
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...