A simplification of the theory of neural groups selection for adaptive control View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

S. Lobo , A. J. García-Tejedor , R. Rodríguez-Galán , Luis López , A. García-Crespo

ABSTRACT

Mathematical models have been extensively used to model living organisms behaviour. Nonetheless, those models do not take into account the role that individual history plays into the establishment of neural structures responsible for its interaction with the environment. TNGS has been postulated as a global, comprehensive solution that models individual behaviour from both biological and evolutionary aspects. Besides, it provides a non symbolic approach to learning processes that does not require extensive prior knowledge from system designer. This paper presents a simplification of TNGS oriented towards its use in adaptive control processes for chemical reactors. An oculomotor system has been implemented based on Darwin III automaton. Simplifications are made on the state equation that describes the dynamic behavior of every processing element. They are driven by a chaotic study on the equation for the weight modification. Based on very simple assumptions (“seeing is better that not seeing”), the system learns to trace a randomly moving object within its vision field. Simulation present data obtained under different assumptions. The evolution of the distance between the center of the input image and the center of the Visual Retina is displayed. More... »

PAGES

946-958

Book

TITLE

Advances in Artificial Life

ISBN

978-3-540-59496-3
978-3-540-49286-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-59496-5_355

DOI

http://dx.doi.org/10.1007/3-540-59496-5_355

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030201953


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Area de Inteligencia Artificial, Departamento de Ingenier\u00eda, Universidad Carlos III, 28911\u00a0Leganes, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lobo", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Area de Inteligencia Artificial, Departamento de Ingenier\u00eda, Universidad Carlos III, 28911\u00a0Leganes, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Tejedor", 
        "givenName": "A. J.", 
        "id": "sg:person.01240437737.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240437737.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Area de Inteligencia Artificial, Departamento de Ingenier\u00eda, Universidad Carlos III, 28911\u00a0Leganes, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodr\u00edguez-Gal\u00e1n", 
        "givenName": "R.", 
        "id": "sg:person.011711357647.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011711357647.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Area de Inteligencia Artificial, Departamento de Ingenier\u00eda, Universidad Carlos III, 28911\u00a0Leganes, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez", 
        "givenName": "Luis", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Area de Inteligencia Artificial, Departamento de Ingenier\u00eda, Universidad Carlos III, 28911\u00a0Leganes, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Crespo", 
        "givenName": "A.", 
        "id": "sg:person.011537037147.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-70544-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001812694", 
          "https://doi.org/10.1007/978-3-642-70544-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-70544-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001812694", 
          "https://doi.org/10.1007/978-3-642-70544-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "Mathematical models have been extensively used to model living organisms behaviour. Nonetheless, those models do not take into account the role that individual history plays into the establishment of neural structures responsible for its interaction with the environment. TNGS has been postulated as a global, comprehensive solution that models individual behaviour from both biological and evolutionary aspects. Besides, it provides a non symbolic approach to learning processes that does not require extensive prior knowledge from system designer. This paper presents a simplification of TNGS oriented towards its use in adaptive control processes for chemical reactors. An oculomotor system has been implemented based on Darwin III automaton. Simplifications are made on the state equation that describes the dynamic behavior of every processing element. They are driven by a chaotic study on the equation for the weight modification. Based on very simple assumptions (\u201cseeing is better that not seeing\u201d), the system learns to trace a randomly moving object within its vision field. Simulation present data obtained under different assumptions. The evolution of the distance between the center of the input image and the center of the Visual Retina is displayed.", 
    "editor": [
      {
        "familyName": "Mor\u00e1n", 
        "givenName": "Federico", 
        "type": "Person"
      }, 
      {
        "familyName": "Moreno", 
        "givenName": "Alvaro", 
        "type": "Person"
      }, 
      {
        "familyName": "Merelo", 
        "givenName": "Juan Juli\u00e1n", 
        "type": "Person"
      }, 
      {
        "familyName": "Chac\u00f3n", 
        "givenName": "Pablo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-59496-5_355", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-59496-3", 
        "978-3-540-49286-3"
      ], 
      "name": "Advances in Artificial Life", 
      "type": "Book"
    }, 
    "name": "A simplification of the theory of neural groups selection for adaptive control", 
    "pagination": "946-958", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-59496-5_355"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8fe0a1063692e27b5ca8c9f7a0ee0b4b037b27482566fca72b0e39ad958691aa"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030201953"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-59496-5_355", 
      "https://app.dimensions.ai/details/publication/pub.1030201953"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000052.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-59496-5_355"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-59496-5_355'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-59496-5_355'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-59496-5_355'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-59496-5_355'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-59496-5_355 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N01001ba3db3441be821527f45286a27d
4 schema:citation sg:pub.10.1007/978-3-642-70544-1
5 schema:datePublished 1995
6 schema:datePublishedReg 1995-01-01
7 schema:description Mathematical models have been extensively used to model living organisms behaviour. Nonetheless, those models do not take into account the role that individual history plays into the establishment of neural structures responsible for its interaction with the environment. TNGS has been postulated as a global, comprehensive solution that models individual behaviour from both biological and evolutionary aspects. Besides, it provides a non symbolic approach to learning processes that does not require extensive prior knowledge from system designer. This paper presents a simplification of TNGS oriented towards its use in adaptive control processes for chemical reactors. An oculomotor system has been implemented based on Darwin III automaton. Simplifications are made on the state equation that describes the dynamic behavior of every processing element. They are driven by a chaotic study on the equation for the weight modification. Based on very simple assumptions (“seeing is better that not seeing”), the system learns to trace a randomly moving object within its vision field. Simulation present data obtained under different assumptions. The evolution of the distance between the center of the input image and the center of the Visual Retina is displayed.
8 schema:editor Nd0bae0b9392c45bdae570a47a2a6033b
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N93b75c918676458f88b223a53b12f420
13 schema:name A simplification of the theory of neural groups selection for adaptive control
14 schema:pagination 946-958
15 schema:productId N04fab4937204479b8ce4f83a8b972d7b
16 N0d1bf17e239242c9be6ae7d95fa563b3
17 N87b777f99a66475a906e2c852cfe60c3
18 schema:publisher N50ffeaa0045e490f983b86dc41cee025
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030201953
20 https://doi.org/10.1007/3-540-59496-5_355
21 schema:sdDatePublished 2019-04-15T23:39
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Naea5276ae2b34ec48b2075dcd99bacf4
24 schema:url http://link.springer.com/10.1007/3-540-59496-5_355
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N01001ba3db3441be821527f45286a27d rdf:first N90f78cba29ca4fe9aeebb3149c80036f
29 rdf:rest Nf43da00d4d9049be9ca03f7a06779fe7
30 N04fab4937204479b8ce4f83a8b972d7b schema:name readcube_id
31 schema:value 8fe0a1063692e27b5ca8c9f7a0ee0b4b037b27482566fca72b0e39ad958691aa
32 rdf:type schema:PropertyValue
33 N0d1bf17e239242c9be6ae7d95fa563b3 schema:name dimensions_id
34 schema:value pub.1030201953
35 rdf:type schema:PropertyValue
36 N108f6e7c95324b078a2493d9f575b996 rdf:first Nb008a473ceab4f068221ca5ab99c4d0f
37 rdf:rest Nea31827c9bd44ed79046103147d0a6b0
38 N1dbb22a2109f48ce8cbd59c24f83bb68 rdf:first sg:person.011711357647.59
39 rdf:rest Nf2375f11ce514ee1ba8896b21a6427a8
40 N1dc26e82667643e89dc1a0098b2eac2c schema:affiliation https://www.grid.ac/institutes/grid.7840.b
41 schema:familyName López
42 schema:givenName Luis
43 rdf:type schema:Person
44 N4698516cc4f1426e839973925e34db93 schema:familyName Morán
45 schema:givenName Federico
46 rdf:type schema:Person
47 N50ffeaa0045e490f983b86dc41cee025 schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 N5bdb5dff0c03409a8f531321f8e0fd75 schema:familyName Chacón
51 schema:givenName Pablo
52 rdf:type schema:Person
53 N7135f26160ab479491f8229c6c923271 rdf:first N5bdb5dff0c03409a8f531321f8e0fd75
54 rdf:rest rdf:nil
55 N76757b6834b141d08d927ccb93943746 rdf:first sg:person.011537037147.86
56 rdf:rest rdf:nil
57 N87b777f99a66475a906e2c852cfe60c3 schema:name doi
58 schema:value 10.1007/3-540-59496-5_355
59 rdf:type schema:PropertyValue
60 N90f78cba29ca4fe9aeebb3149c80036f schema:affiliation https://www.grid.ac/institutes/grid.7840.b
61 schema:familyName Lobo
62 schema:givenName S.
63 rdf:type schema:Person
64 N93b75c918676458f88b223a53b12f420 schema:isbn 978-3-540-49286-3
65 978-3-540-59496-3
66 schema:name Advances in Artificial Life
67 rdf:type schema:Book
68 Naea5276ae2b34ec48b2075dcd99bacf4 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nb008a473ceab4f068221ca5ab99c4d0f schema:familyName Moreno
71 schema:givenName Alvaro
72 rdf:type schema:Person
73 Nd0bae0b9392c45bdae570a47a2a6033b rdf:first N4698516cc4f1426e839973925e34db93
74 rdf:rest N108f6e7c95324b078a2493d9f575b996
75 Ne31cef21be46474cb0abaaabe23b98e9 schema:familyName Merelo
76 schema:givenName Juan Julián
77 rdf:type schema:Person
78 Nea31827c9bd44ed79046103147d0a6b0 rdf:first Ne31cef21be46474cb0abaaabe23b98e9
79 rdf:rest N7135f26160ab479491f8229c6c923271
80 Nf2375f11ce514ee1ba8896b21a6427a8 rdf:first N1dc26e82667643e89dc1a0098b2eac2c
81 rdf:rest N76757b6834b141d08d927ccb93943746
82 Nf43da00d4d9049be9ca03f7a06779fe7 rdf:first sg:person.01240437737.97
83 rdf:rest N1dbb22a2109f48ce8cbd59c24f83bb68
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
88 schema:name Artificial Intelligence and Image Processing
89 rdf:type schema:DefinedTerm
90 sg:person.011537037147.86 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
91 schema:familyName García-Crespo
92 schema:givenName A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86
94 rdf:type schema:Person
95 sg:person.011711357647.59 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
96 schema:familyName Rodríguez-Galán
97 schema:givenName R.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011711357647.59
99 rdf:type schema:Person
100 sg:person.01240437737.97 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
101 schema:familyName García-Tejedor
102 schema:givenName A. J.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240437737.97
104 rdf:type schema:Person
105 sg:pub.10.1007/978-3-642-70544-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001812694
106 https://doi.org/10.1007/978-3-642-70544-1
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
109 schema:name Area de Inteligencia Artificial, Departamento de Ingeniería, Universidad Carlos III, 28911 Leganes, Madrid, Spain
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...