Class-driven statistical discretization of continuous attributes (Extended abstract) View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1995

AUTHORS

M. Richeldi , M. Rossotto

ABSTRACT

Discretization is a pre-processing step of the learning task which offers cognitive benefits as well as computational ones. This paper describes StatDisc, a statistical algorithm that supports supervised learning by performing class-driven discretization. StatDisc provides a concise summarization of continuous attributes by investigating the data composition, i.e., by discovering intervals of the numeric attribute values wherein examples feature distribution of classes homogeneous and strongly contrasting with the distribution of other intervals. Experimental results from a variety of domains confirm that discretizing real attributes causes little loss of learning accuracy while offering large reduction in learning time. More... »

PAGES

335-338

Book

TITLE

Machine Learning: ECML-95

ISBN

978-3-540-59286-0
978-3-540-49232-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-59286-5_81

DOI

http://dx.doi.org/10.1007/3-540-59286-5_81

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052494318


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centro Studi e Laboratori Telecomunicazioni", 
          "id": "https://www.grid.ac/institutes/grid.423811.d", 
          "name": [
            "CSELT (Centro Studi e Laboratori Telecomunicazioni), Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richeldi", 
        "givenName": "M.", 
        "id": "sg:person.015664032730.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015664032730.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro Studi e Laboratori Telecomunicazioni", 
          "id": "https://www.grid.ac/institutes/grid.423811.d", 
          "name": [
            "CSELT (Centro Studi e Laboratori Telecomunicazioni), Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rossotto", 
        "givenName": "M.", 
        "id": "sg:person.015144413255.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015144413255.92"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "Discretization is a pre-processing step of the learning task which offers cognitive benefits as well as computational ones. This paper describes StatDisc, a statistical algorithm that supports supervised learning by performing class-driven discretization. StatDisc provides a concise summarization of continuous attributes by investigating the data composition, i.e., by discovering intervals of the numeric attribute values wherein examples feature distribution of classes homogeneous and strongly contrasting with the distribution of other intervals. Experimental results from a variety of domains confirm that discretizing real attributes causes little loss of learning accuracy while offering large reduction in learning time.", 
    "editor": [
      {
        "familyName": "Lavrac", 
        "givenName": "Nada", 
        "type": "Person"
      }, 
      {
        "familyName": "Wrobel", 
        "givenName": "Stefan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-59286-5_81", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-59286-0", 
        "978-3-540-49232-0"
      ], 
      "name": "Machine Learning: ECML-95", 
      "type": "Book"
    }, 
    "name": "Class-driven statistical discretization of continuous attributes (Extended abstract)", 
    "pagination": "335-338", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-59286-5_81"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa0c5573be194b42af11226bc1f23ff1ebd0f9beeec52fc177208ec8b037ad4b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052494318"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-59286-5_81", 
      "https://app.dimensions.ai/details/publication/pub.1052494318"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000090.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-59286-5_81"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-59286-5_81'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-59286-5_81'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-59286-5_81'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-59286-5_81'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-59286-5_81 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N9a9e81ddc822457596906abeadb4348f
4 schema:datePublished 1995
5 schema:datePublishedReg 1995-01-01
6 schema:description Discretization is a pre-processing step of the learning task which offers cognitive benefits as well as computational ones. This paper describes StatDisc, a statistical algorithm that supports supervised learning by performing class-driven discretization. StatDisc provides a concise summarization of continuous attributes by investigating the data composition, i.e., by discovering intervals of the numeric attribute values wherein examples feature distribution of classes homogeneous and strongly contrasting with the distribution of other intervals. Experimental results from a variety of domains confirm that discretizing real attributes causes little loss of learning accuracy while offering large reduction in learning time.
7 schema:editor Nb49131b4669d4143ad69d5769d44d9f8
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N4961f923497843ae9b95c8edbf9ab7da
12 schema:name Class-driven statistical discretization of continuous attributes (Extended abstract)
13 schema:pagination 335-338
14 schema:productId N456133f287644223b4c0fe8d23933a80
15 Ne6e5b5a449b44782b2456edb97adf0a0
16 Nfb630aa32b224224a19c3b72ff71b776
17 schema:publisher Nc2610d10efa948c59d317160be156bf2
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052494318
19 https://doi.org/10.1007/3-540-59286-5_81
20 schema:sdDatePublished 2019-04-15T18:00
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nbc35addc83c14a1b8f6e79f9c8644e14
23 schema:url http://link.springer.com/10.1007/3-540-59286-5_81
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N456133f287644223b4c0fe8d23933a80 schema:name dimensions_id
28 schema:value pub.1052494318
29 rdf:type schema:PropertyValue
30 N4961f923497843ae9b95c8edbf9ab7da schema:isbn 978-3-540-49232-0
31 978-3-540-59286-0
32 schema:name Machine Learning: ECML-95
33 rdf:type schema:Book
34 N75eb234b08214292a9ab7ec3aa94cf91 schema:familyName Lavrac
35 schema:givenName Nada
36 rdf:type schema:Person
37 N9a9e81ddc822457596906abeadb4348f rdf:first sg:person.015664032730.19
38 rdf:rest Nc23165dbbde24edab51a9abd68be9647
39 Nb49131b4669d4143ad69d5769d44d9f8 rdf:first N75eb234b08214292a9ab7ec3aa94cf91
40 rdf:rest Nb7786435609f4c7186e4159fbf09bb21
41 Nb7786435609f4c7186e4159fbf09bb21 rdf:first Nf9be01131c9142cf9e1edae362d20366
42 rdf:rest rdf:nil
43 Nbc35addc83c14a1b8f6e79f9c8644e14 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nc23165dbbde24edab51a9abd68be9647 rdf:first sg:person.015144413255.92
46 rdf:rest rdf:nil
47 Nc2610d10efa948c59d317160be156bf2 schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 Ne6e5b5a449b44782b2456edb97adf0a0 schema:name doi
51 schema:value 10.1007/3-540-59286-5_81
52 rdf:type schema:PropertyValue
53 Nf9be01131c9142cf9e1edae362d20366 schema:familyName Wrobel
54 schema:givenName Stefan
55 rdf:type schema:Person
56 Nfb630aa32b224224a19c3b72ff71b776 schema:name readcube_id
57 schema:value fa0c5573be194b42af11226bc1f23ff1ebd0f9beeec52fc177208ec8b037ad4b
58 rdf:type schema:PropertyValue
59 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
60 schema:name Psychology and Cognitive Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
63 schema:name Psychology
64 rdf:type schema:DefinedTerm
65 sg:person.015144413255.92 schema:affiliation https://www.grid.ac/institutes/grid.423811.d
66 schema:familyName Rossotto
67 schema:givenName M.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015144413255.92
69 rdf:type schema:Person
70 sg:person.015664032730.19 schema:affiliation https://www.grid.ac/institutes/grid.423811.d
71 schema:familyName Richeldi
72 schema:givenName M.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015664032730.19
74 rdf:type schema:Person
75 https://www.grid.ac/institutes/grid.423811.d schema:alternateName Centro Studi e Laboratori Telecomunicazioni
76 schema:name CSELT (Centro Studi e Laboratori Telecomunicazioni), Torino, Italy
77 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...