Adapting to drift in continuous domains (Extended abstract) View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1995

AUTHORS

Miroslav Kubat , Gerhard Widmer

ABSTRACT

The experiments demonstrate that FRANN compares favourably with FLORA4 in the presence of concept drift. Learning is possible from examples described by symbolic as well as by numeric attributes, and because of its representation formalism (RBF networks, which realize a kind of prototype weighting scheme) FRANN is particularly effective in capturing concepts with nonlinear boundaries. More... »

PAGES

307-310

Book

TITLE

Machine Learning: ECML-95

ISBN

978-3-540-59286-0
978-3-540-49232-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-59286-5_74

DOI

http://dx.doi.org/10.1007/3-540-59286-5_74

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009791448


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Institute for Systems Sciences, Johannes Kepler University Linz, A-4040\u00a0Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubat", 
        "givenName": "Miroslav", 
        "id": "sg:person.016461026707.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461026707.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Department of Medical Cybernetics, University of Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Widmer", 
        "givenName": "Gerhard", 
        "id": "sg:person.013641401431.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641401431.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-8655(89)90092-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044019720"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "The experiments demonstrate that FRANN compares favourably with FLORA4 in the presence of concept drift. Learning is possible from examples described by symbolic as well as by numeric attributes, and because of its representation formalism (RBF networks, which realize a kind of prototype weighting scheme) FRANN is particularly effective in capturing concepts with nonlinear boundaries.", 
    "editor": [
      {
        "familyName": "Lavrac", 
        "givenName": "Nada", 
        "type": "Person"
      }, 
      {
        "familyName": "Wrobel", 
        "givenName": "Stefan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-59286-5_74", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-59286-0", 
        "978-3-540-49232-0"
      ], 
      "name": "Machine Learning: ECML-95", 
      "type": "Book"
    }, 
    "name": "Adapting to drift in continuous domains (Extended abstract)", 
    "pagination": "307-310", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-59286-5_74"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2ea586850df875be638c0c506f63cff02a1a22f3183770381ef6bc449c8adb79"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009791448"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-59286-5_74", 
      "https://app.dimensions.ai/details/publication/pub.1009791448"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000016.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-59286-5_74"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-59286-5_74'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-59286-5_74'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-59286-5_74'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-59286-5_74'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-59286-5_74 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N0ae044a1db314bd6a1ac0c97a9712e18
4 schema:citation https://doi.org/10.1016/0167-8655(89)90092-5
5 schema:datePublished 1995
6 schema:datePublishedReg 1995-01-01
7 schema:description The experiments demonstrate that FRANN compares favourably with FLORA4 in the presence of concept drift. Learning is possible from examples described by symbolic as well as by numeric attributes, and because of its representation formalism (RBF networks, which realize a kind of prototype weighting scheme) FRANN is particularly effective in capturing concepts with nonlinear boundaries.
8 schema:editor N8471c8a58ea243bd9bb073add086e288
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf Nf40a932672724a92b2a5db1611f2d94c
13 schema:name Adapting to drift in continuous domains (Extended abstract)
14 schema:pagination 307-310
15 schema:productId N07df2d524a4747c9b18759f40be7cab6
16 N4159d339caab4debbb2f125e2216b67c
17 N547a360ea26f4224a7675974e6f62608
18 schema:publisher N4438d9fe17044140aab2497f4b81f895
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009791448
20 https://doi.org/10.1007/3-540-59286-5_74
21 schema:sdDatePublished 2019-04-15T19:51
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nc218c39087624bcdb12bd45ab65fb0e4
24 schema:url http://link.springer.com/10.1007/3-540-59286-5_74
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N07df2d524a4747c9b18759f40be7cab6 schema:name readcube_id
29 schema:value 2ea586850df875be638c0c506f63cff02a1a22f3183770381ef6bc449c8adb79
30 rdf:type schema:PropertyValue
31 N0ae044a1db314bd6a1ac0c97a9712e18 rdf:first sg:person.016461026707.02
32 rdf:rest N869e129205664c8687107dfb0ebf09c3
33 N4159d339caab4debbb2f125e2216b67c schema:name doi
34 schema:value 10.1007/3-540-59286-5_74
35 rdf:type schema:PropertyValue
36 N4438d9fe17044140aab2497f4b81f895 schema:location Berlin, Heidelberg
37 schema:name Springer Berlin Heidelberg
38 rdf:type schema:Organisation
39 N547a360ea26f4224a7675974e6f62608 schema:name dimensions_id
40 schema:value pub.1009791448
41 rdf:type schema:PropertyValue
42 N8471c8a58ea243bd9bb073add086e288 rdf:first Nbb65bc4fe0b546708e45a4ee20d885cd
43 rdf:rest Nd4d2a15b8618469cb4c6c352f68fe50f
44 N85c4935a6a254c608b7467848e3ac583 schema:familyName Wrobel
45 schema:givenName Stefan
46 rdf:type schema:Person
47 N869e129205664c8687107dfb0ebf09c3 rdf:first sg:person.013641401431.40
48 rdf:rest rdf:nil
49 Nbb65bc4fe0b546708e45a4ee20d885cd schema:familyName Lavrac
50 schema:givenName Nada
51 rdf:type schema:Person
52 Nc218c39087624bcdb12bd45ab65fb0e4 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nd4d2a15b8618469cb4c6c352f68fe50f rdf:first N85c4935a6a254c608b7467848e3ac583
55 rdf:rest rdf:nil
56 Nf40a932672724a92b2a5db1611f2d94c schema:isbn 978-3-540-49232-0
57 978-3-540-59286-0
58 schema:name Machine Learning: ECML-95
59 rdf:type schema:Book
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information Systems
65 rdf:type schema:DefinedTerm
66 sg:person.013641401431.40 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
67 schema:familyName Widmer
68 schema:givenName Gerhard
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641401431.40
70 rdf:type schema:Person
71 sg:person.016461026707.02 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
72 schema:familyName Kubat
73 schema:givenName Miroslav
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461026707.02
75 rdf:type schema:Person
76 https://doi.org/10.1016/0167-8655(89)90092-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044019720
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
79 schema:name Department of Medical Cybernetics, University of Vienna, Austria
80 rdf:type schema:Organization
81 https://www.grid.ac/institutes/grid.9970.7 schema:alternateName Johannes Kepler University of Linz
82 schema:name Institute for Systems Sciences, Johannes Kepler University Linz, A-4040 Linz, Austria
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...