Sorted HiLog: Sorts in higher-order logic data languages View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

Weidong Chen , Michael Kifer

ABSTRACT

HiLog enhances the modeling capabilities of deductive data bases and logic programming with higher-order and meta-data constructs, complex objects, and schema browsing. Its distinctive feature, a higher-order syntax with a first-order semantics, allows for efficient implementation with speeds comparable to Prolog. In fact, HiLog implementation in XSB [29, 25] together with tabulated query evaluation offers impressive performance with negligible penalty for higher-order syntax, thereby bringing the modeling capabilities of HiLog to practical realization. The lack of sorts in HiLog, however, is somewhat of a problem in database applications, which led to a number of HiLog dialects such as DataHiLog [24]. This paper develops a comprehensive theory of sorts for HiLog. It supports HiLog's flexible higher-order syntax via a polymorphic and recursive sort structure, and it offers an easy and convenient mechanism to control the rules of well-formedness. By varying the sort structure we obtain a full spectrum of languages, ranging from classical predicate logic to the original (non-sorted) HiLog. In between, there is a number of interesting higher-order extensions of Datalog with various degrees of control over the syntax, including second-order predicate calculus with Henkin-style semantics, as described in [10]. We also discuss the benefits of using Sorted HiLog for modeling complex objects and for meta programming. Finally, Sorted HiLog can be easily incorporated into XSB, which makes its practical realization feasible. More... »

PAGES

252-265

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-58907-4_20

DOI

http://dx.doi.org/10.1007/3-540-58907-4_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006193623


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science and Engineering, Southern Methodist University, 75275-0122, Dallas, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.263864.d", 
          "name": [
            "Computer Science and Engineering, Southern Methodist University, 75275-0122, Dallas, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Weidong", 
        "id": "sg:person.01207355664.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207355664.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, SUNY at Stony Brook, 11794-4400, Stony Brook, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Computer Science, SUNY at Stony Brook, 11794-4400, Stony Brook, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kifer", 
        "givenName": "Michael", 
        "id": "sg:person.013375265322.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013375265322.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "HiLog enhances the modeling capabilities of deductive data bases and logic programming with higher-order and meta-data constructs, complex objects, and schema browsing. Its distinctive feature, a higher-order syntax with a first-order semantics, allows for efficient implementation with speeds comparable to Prolog. In fact, HiLog implementation in XSB [29, 25] together with tabulated query evaluation offers impressive performance with negligible penalty for higher-order syntax, thereby bringing the modeling capabilities of HiLog to practical realization. The lack of sorts in HiLog, however, is somewhat of a problem in database applications, which led to a number of HiLog dialects such as DataHiLog [24]. This paper develops a comprehensive theory of sorts for HiLog. It supports HiLog's flexible higher-order syntax via a polymorphic and recursive sort structure, and it offers an easy and convenient mechanism to control the rules of well-formedness. By varying the sort structure we obtain a full spectrum of languages, ranging from classical predicate logic to the original (non-sorted) HiLog. In between, there is a number of interesting higher-order extensions of Datalog with various degrees of control over the syntax, including second-order predicate calculus with Henkin-style semantics, as described in [10]. We also discuss the benefits of using Sorted HiLog for modeling complex objects and for meta programming. Finally, Sorted HiLog can be easily incorporated into XSB, which makes its practical realization feasible.", 
    "editor": [
      {
        "familyName": "Gottlob", 
        "givenName": "Georg", 
        "type": "Person"
      }, 
      {
        "familyName": "Vardi", 
        "givenName": "Moshe Y.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-58907-4_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-58907-5", 
        "978-3-540-49136-1"
      ], 
      "name": "Database Theory \u2014 ICDT '95", 
      "type": "Book"
    }, 
    "keywords": [
      "higher-order syntax", 
      "complex objects", 
      "second-order predicate calculus", 
      "first-order semantics", 
      "deductive data bases", 
      "sort structure", 
      "database applications", 
      "meta programming", 
      "query evaluation", 
      "logic programming", 
      "data language", 
      "efficient implementation", 
      "HiLog", 
      "convenient mechanism", 
      "impressive performance", 
      "predicate logic", 
      "predicate calculus", 
      "syntax", 
      "practical realization", 
      "XSB", 
      "semantics", 
      "data bases", 
      "classical predicate logic", 
      "higher-order extension", 
      "programming", 
      "objects", 
      "implementation", 
      "negligible penalty", 
      "language", 
      "capability", 
      "Datalog", 
      "Prolog", 
      "schema", 
      "realization", 
      "logic", 
      "distinctive features", 
      "rules", 
      "sort", 
      "applications", 
      "performance", 
      "calculus", 
      "features", 
      "speed", 
      "penalty", 
      "extension", 
      "number", 
      "benefits", 
      "dialects", 
      "evaluation", 
      "degree of control", 
      "full spectrum", 
      "structure", 
      "fact", 
      "control", 
      "basis", 
      "lack", 
      "constructs", 
      "comprehensive theory", 
      "theory", 
      "mechanism", 
      "degree", 
      "spectra", 
      "paper", 
      "problem", 
      "meta-data constructs", 
      "HiLog implementation", 
      "capabilities of HiLog", 
      "lack of sorts", 
      "HiLog dialects", 
      "DataHiLog", 
      "HiLog's flexible higher-order syntax", 
      "'s flexible higher-order syntax", 
      "recursive sort structure", 
      "original (non-sorted) HiLog", 
      "interesting higher-order extensions", 
      "Henkin-style semantics", 
      "Sorted HiLog", 
      "higher-order logic data languages", 
      "logic data languages"
    ], 
    "name": "Sorted HiLog: Sorts in higher-order logic data languages", 
    "pagination": "252-265", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006193623"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-58907-4_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-58907-4_20", 
      "https://app.dimensions.ai/details/publication/pub.1006193623"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_75.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-58907-4_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-58907-4_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-58907-4_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-58907-4_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-58907-4_20'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      23 PREDICATES      105 URIs      98 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-58907-4_20 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N4cf0f90289e44719bcb963162f1728ac
4 schema:datePublished 1995
5 schema:datePublishedReg 1995-01-01
6 schema:description HiLog enhances the modeling capabilities of deductive data bases and logic programming with higher-order and meta-data constructs, complex objects, and schema browsing. Its distinctive feature, a higher-order syntax with a first-order semantics, allows for efficient implementation with speeds comparable to Prolog. In fact, HiLog implementation in XSB [29, 25] together with tabulated query evaluation offers impressive performance with negligible penalty for higher-order syntax, thereby bringing the modeling capabilities of HiLog to practical realization. The lack of sorts in HiLog, however, is somewhat of a problem in database applications, which led to a number of HiLog dialects such as DataHiLog [24]. This paper develops a comprehensive theory of sorts for HiLog. It supports HiLog's flexible higher-order syntax via a polymorphic and recursive sort structure, and it offers an easy and convenient mechanism to control the rules of well-formedness. By varying the sort structure we obtain a full spectrum of languages, ranging from classical predicate logic to the original (non-sorted) HiLog. In between, there is a number of interesting higher-order extensions of Datalog with various degrees of control over the syntax, including second-order predicate calculus with Henkin-style semantics, as described in [10]. We also discuss the benefits of using Sorted HiLog for modeling complex objects and for meta programming. Finally, Sorted HiLog can be easily incorporated into XSB, which makes its practical realization feasible.
7 schema:editor Nf1a307ec50e842859c054fcff620871b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3a015d1fbdb54fb8b3edacbddf9e1722
12 schema:keywords 's flexible higher-order syntax
13 DataHiLog
14 Datalog
15 Henkin-style semantics
16 HiLog
17 HiLog dialects
18 HiLog implementation
19 HiLog's flexible higher-order syntax
20 Prolog
21 Sorted HiLog
22 XSB
23 applications
24 basis
25 benefits
26 calculus
27 capabilities of HiLog
28 capability
29 classical predicate logic
30 complex objects
31 comprehensive theory
32 constructs
33 control
34 convenient mechanism
35 data bases
36 data language
37 database applications
38 deductive data bases
39 degree
40 degree of control
41 dialects
42 distinctive features
43 efficient implementation
44 evaluation
45 extension
46 fact
47 features
48 first-order semantics
49 full spectrum
50 higher-order extension
51 higher-order logic data languages
52 higher-order syntax
53 implementation
54 impressive performance
55 interesting higher-order extensions
56 lack
57 lack of sorts
58 language
59 logic
60 logic data languages
61 logic programming
62 mechanism
63 meta programming
64 meta-data constructs
65 negligible penalty
66 number
67 objects
68 original (non-sorted) HiLog
69 paper
70 penalty
71 performance
72 practical realization
73 predicate calculus
74 predicate logic
75 problem
76 programming
77 query evaluation
78 realization
79 recursive sort structure
80 rules
81 schema
82 second-order predicate calculus
83 semantics
84 sort
85 sort structure
86 spectra
87 speed
88 structure
89 syntax
90 theory
91 schema:name Sorted HiLog: Sorts in higher-order logic data languages
92 schema:pagination 252-265
93 schema:productId N981255cbc301469e91abbe7883846d91
94 Na9760fb788884b9ab922e5b0d5647c7e
95 schema:publisher Ndd1827e32e3045d8a0b3d41acacfcc0a
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006193623
97 https://doi.org/10.1007/3-540-58907-4_20
98 schema:sdDatePublished 2021-11-01T19:03
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N41320fe34ee440248d2b98832e33bce6
101 schema:url https://doi.org/10.1007/3-540-58907-4_20
102 sgo:license sg:explorer/license/
103 sgo:sdDataset chapters
104 rdf:type schema:Chapter
105 N3a015d1fbdb54fb8b3edacbddf9e1722 schema:isbn 978-3-540-49136-1
106 978-3-540-58907-5
107 schema:name Database Theory — ICDT '95
108 rdf:type schema:Book
109 N41320fe34ee440248d2b98832e33bce6 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N4cf0f90289e44719bcb963162f1728ac rdf:first sg:person.01207355664.95
112 rdf:rest N7e7ab7a1975a424c8b3f5266e9b20c3d
113 N6b75bdb22e9c48b1be38979659b8a83a rdf:first Ned282885545f45c6b696bbd65b205018
114 rdf:rest rdf:nil
115 N7e7ab7a1975a424c8b3f5266e9b20c3d rdf:first sg:person.013375265322.23
116 rdf:rest rdf:nil
117 N929bab1f5ca84815a3c73e61f5968c2e schema:familyName Gottlob
118 schema:givenName Georg
119 rdf:type schema:Person
120 N981255cbc301469e91abbe7883846d91 schema:name dimensions_id
121 schema:value pub.1006193623
122 rdf:type schema:PropertyValue
123 Na9760fb788884b9ab922e5b0d5647c7e schema:name doi
124 schema:value 10.1007/3-540-58907-4_20
125 rdf:type schema:PropertyValue
126 Ndd1827e32e3045d8a0b3d41acacfcc0a schema:name Springer Nature
127 rdf:type schema:Organisation
128 Ned282885545f45c6b696bbd65b205018 schema:familyName Vardi
129 schema:givenName Moshe Y.
130 rdf:type schema:Person
131 Nf1a307ec50e842859c054fcff620871b rdf:first N929bab1f5ca84815a3c73e61f5968c2e
132 rdf:rest N6b75bdb22e9c48b1be38979659b8a83a
133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information and Computing Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
137 schema:name Information Systems
138 rdf:type schema:DefinedTerm
139 sg:person.01207355664.95 schema:affiliation grid-institutes:grid.263864.d
140 schema:familyName Chen
141 schema:givenName Weidong
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207355664.95
143 rdf:type schema:Person
144 sg:person.013375265322.23 schema:affiliation grid-institutes:grid.36425.36
145 schema:familyName Kifer
146 schema:givenName Michael
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013375265322.23
148 rdf:type schema:Person
149 grid-institutes:grid.263864.d schema:alternateName Computer Science and Engineering, Southern Methodist University, 75275-0122, Dallas, Texas, USA
150 schema:name Computer Science and Engineering, Southern Methodist University, 75275-0122, Dallas, Texas, USA
151 rdf:type schema:Organization
152 grid-institutes:grid.36425.36 schema:alternateName Department of Computer Science, SUNY at Stony Brook, 11794-4400, Stony Brook, NY, USA
153 schema:name Department of Computer Science, SUNY at Stony Brook, 11794-4400, Stony Brook, NY, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...