On the role of machine learning in knowledge-based control View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1994

AUTHORS

Werner Brockmann

ABSTRACT

Knowledge-based methods gain increasing importance in automation systems. But many real applications are too complex or there is too little understanding to acquire useful knowledge. Therefore machine learning techniques like the directed self-learning which is used here may help to bridge this gap. In order to point out the advantages of machine learning in process automation, we applied the directed self-learning method to the control of an inverted pendulum. Through a comparison between a knowledge-based and a machine learning version of the controller, both based on the knowledge of the same expert, results were achieved which demonstrate the usefulness of machine learning in control applications. More... »

PAGES

343-346

References to SciGraph publications

  • 2005-06-09. Combining real-time with knowledge processing techniques in INDUSTRIAL AND ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS
  • Book

    TITLE

    Machine Learning: ECML-94

    ISBN

    978-3-540-57868-0
    978-3-540-48365-6

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/3-540-57868-4_69

    DOI

    http://dx.doi.org/10.1007/3-540-57868-4_69

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020759513


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Paderborn", 
              "id": "https://www.grid.ac/institutes/grid.5659.f", 
              "name": [
                "University GH Paderborn, FB 14, FG Datentechnik, D-33095\u00a0Paderborn, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brockmann", 
            "givenName": "Werner", 
            "id": "sg:person.07656223026.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656223026.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0165-0114(88)90205-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001720036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-0114(88)90205-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001720036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/98784.98886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002257848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0025014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046213401", 
              "https://doi.org/10.1007/bfb0025014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0025014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046213401", 
              "https://doi.org/10.1007/bfb0025014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-0114(89)90252-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051553869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-0114(89)90252-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051553869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/etfa.1992.683251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086282857"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994", 
        "datePublishedReg": "1994-01-01", 
        "description": "Knowledge-based methods gain increasing importance in automation systems. But many real applications are too complex or there is too little understanding to acquire useful knowledge. Therefore machine learning techniques like the directed self-learning which is used here may help to bridge this gap. In order to point out the advantages of machine learning in process automation, we applied the directed self-learning method to the control of an inverted pendulum. Through a comparison between a knowledge-based and a machine learning version of the controller, both based on the knowledge of the same expert, results were achieved which demonstrate the usefulness of machine learning in control applications.", 
        "editor": [
          {
            "familyName": "Bergadano", 
            "givenName": "Francesco", 
            "type": "Person"
          }, 
          {
            "familyName": "Raedt", 
            "givenName": "Luc", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/3-540-57868-4_69", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-540-57868-0", 
            "978-3-540-48365-6"
          ], 
          "name": "Machine Learning: ECML-94", 
          "type": "Book"
        }, 
        "name": "On the role of machine learning in knowledge-based control", 
        "pagination": "343-346", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/3-540-57868-4_69"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "62ea2487f48850e75683f3fcc26d952c4e8beef7f1b825e4543aa19e8e3df567"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020759513"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/3-540-57868-4_69", 
          "https://app.dimensions.ai/details/publication/pub.1020759513"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T17:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000256.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/3-540-57868-4_69"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-57868-4_69'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-57868-4_69'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-57868-4_69'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-57868-4_69'


     

    This table displays all metadata directly associated to this object as RDF triples.

    86 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/3-540-57868-4_69 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N11c8b4f334894e9a89f3b6d5f150142f
    4 schema:citation sg:pub.10.1007/bfb0025014
    5 https://doi.org/10.1016/0165-0114(88)90205-9
    6 https://doi.org/10.1016/0165-0114(89)90252-2
    7 https://doi.org/10.1109/etfa.1992.683251
    8 https://doi.org/10.1145/98784.98886
    9 schema:datePublished 1994
    10 schema:datePublishedReg 1994-01-01
    11 schema:description Knowledge-based methods gain increasing importance in automation systems. But many real applications are too complex or there is too little understanding to acquire useful knowledge. Therefore machine learning techniques like the directed self-learning which is used here may help to bridge this gap. In order to point out the advantages of machine learning in process automation, we applied the directed self-learning method to the control of an inverted pendulum. Through a comparison between a knowledge-based and a machine learning version of the controller, both based on the knowledge of the same expert, results were achieved which demonstrate the usefulness of machine learning in control applications.
    12 schema:editor N5964d4b286c94eb7b762987ab264d9f3
    13 schema:genre chapter
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf Nad7a135b0e314b7b9d96b47410eea185
    17 schema:name On the role of machine learning in knowledge-based control
    18 schema:pagination 343-346
    19 schema:productId N113b10920f5344cb8e6e6e96698f63e8
    20 N8c30787fec0e42a7b67570bb428da9f7
    21 Nff1aae23af41461797f254a94af0c5db
    22 schema:publisher Ne827074b91f44f99b636a18267097377
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020759513
    24 https://doi.org/10.1007/3-540-57868-4_69
    25 schema:sdDatePublished 2019-04-15T17:13
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher Na6b94e04b1664b25bec30108003c8089
    28 schema:url http://link.springer.com/10.1007/3-540-57868-4_69
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset chapters
    31 rdf:type schema:Chapter
    32 N113b10920f5344cb8e6e6e96698f63e8 schema:name dimensions_id
    33 schema:value pub.1020759513
    34 rdf:type schema:PropertyValue
    35 N11c8b4f334894e9a89f3b6d5f150142f rdf:first sg:person.07656223026.27
    36 rdf:rest rdf:nil
    37 N16ada8416a3c4ef980f46ee2949bc63e schema:familyName Bergadano
    38 schema:givenName Francesco
    39 rdf:type schema:Person
    40 N4d5992950472426fb74d7c0b215dae21 schema:familyName Raedt
    41 schema:givenName Luc
    42 rdf:type schema:Person
    43 N5964d4b286c94eb7b762987ab264d9f3 rdf:first N16ada8416a3c4ef980f46ee2949bc63e
    44 rdf:rest Ncb9a4c0fb1624540bee52bb30a41a098
    45 N8c30787fec0e42a7b67570bb428da9f7 schema:name doi
    46 schema:value 10.1007/3-540-57868-4_69
    47 rdf:type schema:PropertyValue
    48 Na6b94e04b1664b25bec30108003c8089 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nad7a135b0e314b7b9d96b47410eea185 schema:isbn 978-3-540-48365-6
    51 978-3-540-57868-0
    52 schema:name Machine Learning: ECML-94
    53 rdf:type schema:Book
    54 Ncb9a4c0fb1624540bee52bb30a41a098 rdf:first N4d5992950472426fb74d7c0b215dae21
    55 rdf:rest rdf:nil
    56 Ne827074b91f44f99b636a18267097377 schema:location Berlin, Heidelberg
    57 schema:name Springer Berlin Heidelberg
    58 rdf:type schema:Organisation
    59 Nff1aae23af41461797f254a94af0c5db schema:name readcube_id
    60 schema:value 62ea2487f48850e75683f3fcc26d952c4e8beef7f1b825e4543aa19e8e3df567
    61 rdf:type schema:PropertyValue
    62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Information and Computing Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Artificial Intelligence and Image Processing
    67 rdf:type schema:DefinedTerm
    68 sg:person.07656223026.27 schema:affiliation https://www.grid.ac/institutes/grid.5659.f
    69 schema:familyName Brockmann
    70 schema:givenName Werner
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656223026.27
    72 rdf:type schema:Person
    73 sg:pub.10.1007/bfb0025014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046213401
    74 https://doi.org/10.1007/bfb0025014
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1016/0165-0114(88)90205-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001720036
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1016/0165-0114(89)90252-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051553869
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1109/etfa.1992.683251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086282857
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1145/98784.98886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002257848
    83 rdf:type schema:CreativeWork
    84 https://www.grid.ac/institutes/grid.5659.f schema:alternateName University of Paderborn
    85 schema:name University GH Paderborn, FB 14, FG Datentechnik, D-33095 Paderborn, Germany
    86 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...