The minimal coverability graph for Petri nets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

Alain Finkel

ABSTRACT

We present the unique minimal coverability graph for Petri nets. When the reachability graph of a Petri net is infinite, the minimal coverability graph allows us to decide the same problems as the well-known Karp-Miller graph: the Finite Reachability Tree Problem, the Finite Reachability Set Problem, the Boundedness Problem, the Quasi-Liveness Problem and the Regularity Problem. The algorithm given for computing the minimal coverability graph is based on a new optimization of the Karp and Miller procedure. More... »

PAGES

210-243

Book

TITLE

Advances in Petri Nets 1993

ISBN

978-3-540-56689-2
978-3-540-47631-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-56689-9_45

DOI

http://dx.doi.org/10.1007/3-540-56689-9_45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005061806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure de Cachan", 
          "id": "https://www.grid.ac/institutes/grid.6390.c", 
          "name": [
            "Laboratoire d'Informatique Fondamentale et Appliqu\u00e9e de Cachan, ENS Cachan, 61 avenue du Pr\u00e9sident Wilson, 94235\u00a0Cedex Cachan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finkel", 
        "givenName": "Alain", 
        "id": "sg:person.013004413731.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004413731.32"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "We present the unique minimal coverability graph for Petri nets. When the reachability graph of a Petri net is infinite, the minimal coverability graph allows us to decide the same problems as the well-known Karp-Miller graph: the Finite Reachability Tree Problem, the Finite Reachability Set Problem, the Boundedness Problem, the Quasi-Liveness Problem and the Regularity Problem. The algorithm given for computing the minimal coverability graph is based on a new optimization of the Karp and Miller procedure.", 
    "editor": [
      {
        "familyName": "Rozenberg", 
        "givenName": "Grzegorz", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-56689-9_45", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-56689-2", 
        "978-3-540-47631-3"
      ], 
      "name": "Advances in Petri Nets 1993", 
      "type": "Book"
    }, 
    "name": "The minimal coverability graph for Petri nets", 
    "pagination": "210-243", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-56689-9_45"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "181df78c13e1dea5fb04657be0d1e7dbb20f94dd8f6499602538f2fdad874dc5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005061806"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-56689-9_45", 
      "https://app.dimensions.ai/details/publication/pub.1005061806"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000008.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-56689-9_45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-56689-9_45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-56689-9_45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-56689-9_45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-56689-9_45'


 

This table displays all metadata directly associated to this object as RDF triples.

65 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-56689-9_45 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N68e17a728bfa46f39d8ce086b7b86a0e
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description We present the unique minimal coverability graph for Petri nets. When the reachability graph of a Petri net is infinite, the minimal coverability graph allows us to decide the same problems as the well-known Karp-Miller graph: the Finite Reachability Tree Problem, the Finite Reachability Set Problem, the Boundedness Problem, the Quasi-Liveness Problem and the Regularity Problem. The algorithm given for computing the minimal coverability graph is based on a new optimization of the Karp and Miller procedure.
7 schema:editor N79d0b59997cf4dd89949a6203bf42ce1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N97d8b786a13449b4aeedd410ce9e75fe
12 schema:name The minimal coverability graph for Petri nets
13 schema:pagination 210-243
14 schema:productId N16ac3e0aca5145b8a34a0deaa97cc094
15 Nda6e6b934fa14aea8ee9bae2280b12bc
16 Neb3968317f8541b68e89202d428c6520
17 schema:publisher Nd47ef583108a494ea02bf79162762097
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005061806
19 https://doi.org/10.1007/3-540-56689-9_45
20 schema:sdDatePublished 2019-04-15T18:53
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N474e017d6ad241f6ad89415d82d2fbbf
23 schema:url http://link.springer.com/10.1007/3-540-56689-9_45
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N16ac3e0aca5145b8a34a0deaa97cc094 schema:name dimensions_id
28 schema:value pub.1005061806
29 rdf:type schema:PropertyValue
30 N474e017d6ad241f6ad89415d82d2fbbf schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N68e17a728bfa46f39d8ce086b7b86a0e rdf:first sg:person.013004413731.32
33 rdf:rest rdf:nil
34 N79d0b59997cf4dd89949a6203bf42ce1 rdf:first Ncb34ef150b6b424c97df5b500c983a50
35 rdf:rest rdf:nil
36 N97d8b786a13449b4aeedd410ce9e75fe schema:isbn 978-3-540-47631-3
37 978-3-540-56689-2
38 schema:name Advances in Petri Nets 1993
39 rdf:type schema:Book
40 Ncb34ef150b6b424c97df5b500c983a50 schema:familyName Rozenberg
41 schema:givenName Grzegorz
42 rdf:type schema:Person
43 Nd47ef583108a494ea02bf79162762097 schema:location Berlin, Heidelberg
44 schema:name Springer Berlin Heidelberg
45 rdf:type schema:Organisation
46 Nda6e6b934fa14aea8ee9bae2280b12bc schema:name readcube_id
47 schema:value 181df78c13e1dea5fb04657be0d1e7dbb20f94dd8f6499602538f2fdad874dc5
48 rdf:type schema:PropertyValue
49 Neb3968317f8541b68e89202d428c6520 schema:name doi
50 schema:value 10.1007/3-540-56689-9_45
51 rdf:type schema:PropertyValue
52 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
53 schema:name Information and Computing Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
56 schema:name Computation Theory and Mathematics
57 rdf:type schema:DefinedTerm
58 sg:person.013004413731.32 schema:affiliation https://www.grid.ac/institutes/grid.6390.c
59 schema:familyName Finkel
60 schema:givenName Alain
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004413731.32
62 rdf:type schema:Person
63 https://www.grid.ac/institutes/grid.6390.c schema:alternateName École Normale Supérieure de Cachan
64 schema:name Laboratoire d'Informatique Fondamentale et Appliquée de Cachan, ENS Cachan, 61 avenue du Président Wilson, 94235 Cedex Cachan, France
65 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...