The minimal coverability graph for Petri nets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

Alain Finkel

ABSTRACT

We present the unique minimal coverability graph for Petri nets. When the reachability graph of a Petri net is infinite, the minimal coverability graph allows us to decide the same problems as the well-known Karp-Miller graph: the Finite Reachability Tree Problem, the Finite Reachability Set Problem, the Boundedness Problem, the Quasi-Liveness Problem and the Regularity Problem. The algorithm given for computing the minimal coverability graph is based on a new optimization of the Karp and Miller procedure. More... »

PAGES

210-243

Book

TITLE

Advances in Petri Nets 1993

ISBN

978-3-540-56689-2
978-3-540-47631-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-56689-9_45

DOI

http://dx.doi.org/10.1007/3-540-56689-9_45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005061806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure de Cachan", 
          "id": "https://www.grid.ac/institutes/grid.6390.c", 
          "name": [
            "Laboratoire d'Informatique Fondamentale et Appliqu\u00e9e de Cachan, ENS Cachan, 61 avenue du Pr\u00e9sident Wilson, 94235\u00a0Cedex Cachan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finkel", 
        "givenName": "Alain", 
        "id": "sg:person.013004413731.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004413731.32"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "We present the unique minimal coverability graph for Petri nets. When the reachability graph of a Petri net is infinite, the minimal coverability graph allows us to decide the same problems as the well-known Karp-Miller graph: the Finite Reachability Tree Problem, the Finite Reachability Set Problem, the Boundedness Problem, the Quasi-Liveness Problem and the Regularity Problem. The algorithm given for computing the minimal coverability graph is based on a new optimization of the Karp and Miller procedure.", 
    "editor": [
      {
        "familyName": "Rozenberg", 
        "givenName": "Grzegorz", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-56689-9_45", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-56689-2", 
        "978-3-540-47631-3"
      ], 
      "name": "Advances in Petri Nets 1993", 
      "type": "Book"
    }, 
    "name": "The minimal coverability graph for Petri nets", 
    "pagination": "210-243", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-56689-9_45"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "181df78c13e1dea5fb04657be0d1e7dbb20f94dd8f6499602538f2fdad874dc5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005061806"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-56689-9_45", 
      "https://app.dimensions.ai/details/publication/pub.1005061806"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000008.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-56689-9_45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-56689-9_45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-56689-9_45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-56689-9_45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-56689-9_45'


 

This table displays all metadata directly associated to this object as RDF triples.

65 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-56689-9_45 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N922a630ece834c35af8cb41640f57dc2
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description We present the unique minimal coverability graph for Petri nets. When the reachability graph of a Petri net is infinite, the minimal coverability graph allows us to decide the same problems as the well-known Karp-Miller graph: the Finite Reachability Tree Problem, the Finite Reachability Set Problem, the Boundedness Problem, the Quasi-Liveness Problem and the Regularity Problem. The algorithm given for computing the minimal coverability graph is based on a new optimization of the Karp and Miller procedure.
7 schema:editor N91a13f1920824581ac5d2cdcbe85a160
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N557839806d18462c9d6ae5738a092d8d
12 schema:name The minimal coverability graph for Petri nets
13 schema:pagination 210-243
14 schema:productId N550fae4428c24f56a63607b2a179cd88
15 N56c7c70755dd411d915d6374e21fa26a
16 N82790743a24f444fb87b83698cb260cc
17 schema:publisher N66c5833fcfe249c08c3ba83354030af6
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005061806
19 https://doi.org/10.1007/3-540-56689-9_45
20 schema:sdDatePublished 2019-04-15T18:53
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nf618c4b19ad7481491cd6d99c2e11fc1
23 schema:url http://link.springer.com/10.1007/3-540-56689-9_45
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N36b2f218f8f54ac79b5cd79aa8a98910 schema:familyName Rozenberg
28 schema:givenName Grzegorz
29 rdf:type schema:Person
30 N550fae4428c24f56a63607b2a179cd88 schema:name doi
31 schema:value 10.1007/3-540-56689-9_45
32 rdf:type schema:PropertyValue
33 N557839806d18462c9d6ae5738a092d8d schema:isbn 978-3-540-47631-3
34 978-3-540-56689-2
35 schema:name Advances in Petri Nets 1993
36 rdf:type schema:Book
37 N56c7c70755dd411d915d6374e21fa26a schema:name dimensions_id
38 schema:value pub.1005061806
39 rdf:type schema:PropertyValue
40 N66c5833fcfe249c08c3ba83354030af6 schema:location Berlin, Heidelberg
41 schema:name Springer Berlin Heidelberg
42 rdf:type schema:Organisation
43 N82790743a24f444fb87b83698cb260cc schema:name readcube_id
44 schema:value 181df78c13e1dea5fb04657be0d1e7dbb20f94dd8f6499602538f2fdad874dc5
45 rdf:type schema:PropertyValue
46 N91a13f1920824581ac5d2cdcbe85a160 rdf:first N36b2f218f8f54ac79b5cd79aa8a98910
47 rdf:rest rdf:nil
48 N922a630ece834c35af8cb41640f57dc2 rdf:first sg:person.013004413731.32
49 rdf:rest rdf:nil
50 Nf618c4b19ad7481491cd6d99c2e11fc1 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
53 schema:name Information and Computing Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
56 schema:name Computation Theory and Mathematics
57 rdf:type schema:DefinedTerm
58 sg:person.013004413731.32 schema:affiliation https://www.grid.ac/institutes/grid.6390.c
59 schema:familyName Finkel
60 schema:givenName Alain
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013004413731.32
62 rdf:type schema:Person
63 https://www.grid.ac/institutes/grid.6390.c schema:alternateName École Normale Supérieure de Cachan
64 schema:name Laboratoire d'Informatique Fondamentale et Appliquée de Cachan, ENS Cachan, 61 avenue du Président Wilson, 94235 Cedex Cachan, France
65 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...