Active detection and classification of junctions by foveation with a head-eye system guided by the scale-space primal sketch View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1992

AUTHORS

Kjell Brunnström , Tony Lindeberg , Jan-Olof Eklundh

ABSTRACT

We consider how junction detection and classification can be performed in an active visual system. This is to exemplify that feature de-tection and classification in general can be done by both simple and robust methods, if the vision system is allowed to look at the world rather than at prerecorded images. We address issues on how to attract the attention to salient local image structures, as well as on how to characterize those. More... »

PAGES

701-709

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-55426-2_77

DOI

http://dx.doi.org/10.1007/3-540-55426-2_77

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019653141


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Numerical Analysis and Computing Science Royal Institute of Technology, Computational Vision and Active Perception Laboratory (CVAP), S-100 44, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Department of Numerical Analysis and Computing Science Royal Institute of Technology, Computational Vision and Active Perception Laboratory (CVAP), S-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brunnstr\u00f6m", 
        "givenName": "Kjell", 
        "id": "sg:person.07511673053.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07511673053.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Numerical Analysis and Computing Science Royal Institute of Technology, Computational Vision and Active Perception Laboratory (CVAP), S-100 44, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Department of Numerical Analysis and Computing Science Royal Institute of Technology, Computational Vision and Active Perception Laboratory (CVAP), S-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindeberg", 
        "givenName": "Tony", 
        "id": "sg:person.015666316421.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666316421.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Numerical Analysis and Computing Science Royal Institute of Technology, Computational Vision and Active Perception Laboratory (CVAP), S-100 44, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Department of Numerical Analysis and Computing Science Royal Institute of Technology, Computational Vision and Active Perception Laboratory (CVAP), S-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eklundh", 
        "givenName": "Jan-Olof", 
        "id": "sg:person.014400652155.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1992", 
    "datePublishedReg": "1992-01-01", 
    "description": "We consider how junction detection and classification can be performed in an active visual system. This is to exemplify that feature de-tection and classification in general can be done by both simple and robust methods, if the vision system is allowed to look at the world rather than at prerecorded images. We address issues on how to attract the attention to salient local image structures, as well as on how to characterize those.", 
    "editor": [
      {
        "familyName": "Sandini", 
        "givenName": "G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-55426-2_77", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-55426-4", 
        "978-3-540-47069-4"
      ], 
      "name": "Computer Vision \u2014 ECCV'92", 
      "type": "Book"
    }, 
    "keywords": [
      "classification of junctions", 
      "head-eye system", 
      "active visual system", 
      "scale-space primal sketch", 
      "local image structure", 
      "vision system", 
      "image structure", 
      "primal sketch", 
      "junction detection", 
      "classification", 
      "active detection", 
      "visual system", 
      "robust method", 
      "system", 
      "foveation", 
      "detection", 
      "images", 
      "sketch", 
      "features", 
      "issues", 
      "world", 
      "method", 
      "attention", 
      "structure", 
      "junction"
    ], 
    "name": "Active detection and classification of junctions by foveation with a head-eye system guided by the scale-space primal sketch", 
    "pagination": "701-709", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019653141"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-55426-2_77"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-55426-2_77", 
      "https://app.dimensions.ai/details/publication/pub.1019653141"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_319.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-55426-2_77"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-55426-2_77'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-55426-2_77'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-55426-2_77'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-55426-2_77'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      22 PREDICATES      50 URIs      43 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-55426-2_77 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3428691e1e2e452fa98f207a3fe38f6a
4 schema:datePublished 1992
5 schema:datePublishedReg 1992-01-01
6 schema:description We consider how junction detection and classification can be performed in an active visual system. This is to exemplify that feature de-tection and classification in general can be done by both simple and robust methods, if the vision system is allowed to look at the world rather than at prerecorded images. We address issues on how to attract the attention to salient local image structures, as well as on how to characterize those.
7 schema:editor N6bb8b2ac5aa64b6ea9e66b36e7b19f3c
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Naa694d084c7f4eaeaed36934ad76cb09
11 schema:keywords active detection
12 active visual system
13 attention
14 classification
15 classification of junctions
16 detection
17 features
18 foveation
19 head-eye system
20 image structure
21 images
22 issues
23 junction
24 junction detection
25 local image structure
26 method
27 primal sketch
28 robust method
29 scale-space primal sketch
30 sketch
31 structure
32 system
33 vision system
34 visual system
35 world
36 schema:name Active detection and classification of junctions by foveation with a head-eye system guided by the scale-space primal sketch
37 schema:pagination 701-709
38 schema:productId N2cf3bc9e396b4f819c379e7475a36c46
39 N50d045f69b31427bb500408edc7bb495
40 schema:publisher Nfb9762e58fdd4f4dbffccee637df4913
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019653141
42 https://doi.org/10.1007/3-540-55426-2_77
43 schema:sdDatePublished 2022-12-01T06:51
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N0458ed54ee824010a5e01f7213f3ca15
46 schema:url https://doi.org/10.1007/3-540-55426-2_77
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N0458ed54ee824010a5e01f7213f3ca15 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N2cf3bc9e396b4f819c379e7475a36c46 schema:name doi
53 schema:value 10.1007/3-540-55426-2_77
54 rdf:type schema:PropertyValue
55 N3428691e1e2e452fa98f207a3fe38f6a rdf:first sg:person.07511673053.86
56 rdf:rest N88dbfbf436454f308b47388b3d00e7fd
57 N50d045f69b31427bb500408edc7bb495 schema:name dimensions_id
58 schema:value pub.1019653141
59 rdf:type schema:PropertyValue
60 N6bb8b2ac5aa64b6ea9e66b36e7b19f3c rdf:first N86b978dbb97a4da5b7c9767061708dd9
61 rdf:rest rdf:nil
62 N86b978dbb97a4da5b7c9767061708dd9 schema:familyName Sandini
63 schema:givenName G.
64 rdf:type schema:Person
65 N88dbfbf436454f308b47388b3d00e7fd rdf:first sg:person.015666316421.55
66 rdf:rest N8f0bfc2208644ff2b7ec10a7d1bc46b9
67 N8f0bfc2208644ff2b7ec10a7d1bc46b9 rdf:first sg:person.014400652155.17
68 rdf:rest rdf:nil
69 Naa694d084c7f4eaeaed36934ad76cb09 schema:isbn 978-3-540-47069-4
70 978-3-540-55426-4
71 schema:name Computer Vision — ECCV'92
72 rdf:type schema:Book
73 Nfb9762e58fdd4f4dbffccee637df4913 schema:name Springer Nature
74 rdf:type schema:Organisation
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:person.014400652155.17 schema:affiliation grid-institutes:grid.5037.1
82 schema:familyName Eklundh
83 schema:givenName Jan-Olof
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17
85 rdf:type schema:Person
86 sg:person.015666316421.55 schema:affiliation grid-institutes:grid.5037.1
87 schema:familyName Lindeberg
88 schema:givenName Tony
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666316421.55
90 rdf:type schema:Person
91 sg:person.07511673053.86 schema:affiliation grid-institutes:grid.5037.1
92 schema:familyName Brunnström
93 schema:givenName Kjell
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07511673053.86
95 rdf:type schema:Person
96 grid-institutes:grid.5037.1 schema:alternateName Department of Numerical Analysis and Computing Science Royal Institute of Technology, Computational Vision and Active Perception Laboratory (CVAP), S-100 44, Stockholm, Sweden
97 schema:name Department of Numerical Analysis and Computing Science Royal Institute of Technology, Computational Vision and Active Perception Laboratory (CVAP), S-100 44, Stockholm, Sweden
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...