Interactions of solitons in (2+1) dimensions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

Bernard Piette , Wojciech J. Zakrzewski

ABSTRACT

We consider instapton solutions of the CP N models in two Euclidean dimensions as solitons of the same models in (2+1) dimensions. We find that, in general, the solitons tend to shrink so to stabilise them we add special potential and skyrme-like terms. We show that in head-on collisions the solitons scatter at 90° to the direction of their original motion and that they also undergo a shift along their trajectories. More... »

PAGES

242-249

Book

TITLE

Nonlinear Coherent Structures in Physics and Biology

ISBN

978-3-540-54890-4
978-3-540-46458-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-54890-4_177

DOI

http://dx.doi.org/10.1007/3-540-54890-4_177

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039554745


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, University of Durham, DH1 3LE\u00a0Durham, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piette", 
        "givenName": "Bernard", 
        "id": "sg:person.014121444104.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, University of Durham, DH1 3LE\u00a0Durham, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zakrzewski", 
        "givenName": "Wojciech J.", 
        "id": "sg:person.014640770123.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014640770123.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0550-3213(90)90684-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003708014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(90)90684-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003708014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.523400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058100420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/3/2/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/3/3/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110650"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "We consider instapton solutions of the CP N models in two Euclidean dimensions as solitons of the same models in (2+1) dimensions. We find that, in general, the solitons tend to shrink so to stabilise them we add special potential and skyrme-like terms. We show that in head-on collisions the solitons scatter at 90\u00b0 to the direction of their original motion and that they also undergo a shift along their trajectories.", 
    "editor": [
      {
        "familyName": "Remoissenet", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Peyrand", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-54890-4_177", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-54890-4", 
        "978-3-540-46458-7"
      ], 
      "name": "Nonlinear Coherent Structures in Physics and Biology", 
      "type": "Book"
    }, 
    "name": "Interactions of solitons in (2+1) dimensions", 
    "pagination": "242-249", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-54890-4_177"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bc6b84c731aef51834a745c885afa09f3cac0b661b1ff9cf25be9f21a9463374"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039554745"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-54890-4_177", 
      "https://app.dimensions.ai/details/publication/pub.1039554745"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000267.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-54890-4_177"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-54890-4_177'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-54890-4_177'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-54890-4_177'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-54890-4_177'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-54890-4_177 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf048f6550ad8434ab10de2546312ded4
4 schema:citation https://doi.org/10.1016/0550-3213(90)90684-6
5 https://doi.org/10.1063/1.523400
6 https://doi.org/10.1088/0951-7715/3/2/007
7 https://doi.org/10.1088/0951-7715/3/3/011
8 schema:datePublished 1991
9 schema:datePublishedReg 1991-01-01
10 schema:description We consider instapton solutions of the CP N models in two Euclidean dimensions as solitons of the same models in (2+1) dimensions. We find that, in general, the solitons tend to shrink so to stabilise them we add special potential and skyrme-like terms. We show that in head-on collisions the solitons scatter at 90° to the direction of their original motion and that they also undergo a shift along their trajectories.
11 schema:editor Na34c1eea7170481cbfd06236751dfff3
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N658ea0e19bd648ea90eae17535b7cb30
16 schema:name Interactions of solitons in (2+1) dimensions
17 schema:pagination 242-249
18 schema:productId N20abb99f56134df5bede8c192a6ef892
19 N2410a518f4f042a7abd188f31728a0d1
20 N3a9e857efc624f56b8d1e5a3bbde55b5
21 schema:publisher Nc4c0695e58974455bd011be3c4f09e85
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039554745
23 https://doi.org/10.1007/3-540-54890-4_177
24 schema:sdDatePublished 2019-04-16T00:50
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N700ffa3e41964d838dcd42d706852cf5
27 schema:url http://link.springer.com/10.1007/3-540-54890-4_177
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N20abb99f56134df5bede8c192a6ef892 schema:name readcube_id
32 schema:value bc6b84c731aef51834a745c885afa09f3cac0b661b1ff9cf25be9f21a9463374
33 rdf:type schema:PropertyValue
34 N2410a518f4f042a7abd188f31728a0d1 schema:name dimensions_id
35 schema:value pub.1039554745
36 rdf:type schema:PropertyValue
37 N26dbdadaab644d46903e52274abd63ce schema:familyName Remoissenet
38 schema:givenName M.
39 rdf:type schema:Person
40 N2cb412cebad44a0d9f3ca70148f2ca4c rdf:first Na5c2f27f54784b789bedc0a93ab56885
41 rdf:rest rdf:nil
42 N3a9e857efc624f56b8d1e5a3bbde55b5 schema:name doi
43 schema:value 10.1007/3-540-54890-4_177
44 rdf:type schema:PropertyValue
45 N658ea0e19bd648ea90eae17535b7cb30 schema:isbn 978-3-540-46458-7
46 978-3-540-54890-4
47 schema:name Nonlinear Coherent Structures in Physics and Biology
48 rdf:type schema:Book
49 N700ffa3e41964d838dcd42d706852cf5 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Na34c1eea7170481cbfd06236751dfff3 rdf:first N26dbdadaab644d46903e52274abd63ce
52 rdf:rest N2cb412cebad44a0d9f3ca70148f2ca4c
53 Na5c2f27f54784b789bedc0a93ab56885 schema:familyName Peyrand
54 schema:givenName M.
55 rdf:type schema:Person
56 Nc4c0695e58974455bd011be3c4f09e85 schema:location Berlin, Heidelberg
57 schema:name Springer Berlin Heidelberg
58 rdf:type schema:Organisation
59 Nd848857a996d4a42872907aa165cc38f rdf:first sg:person.014640770123.34
60 rdf:rest rdf:nil
61 Nf048f6550ad8434ab10de2546312ded4 rdf:first sg:person.014121444104.73
62 rdf:rest Nd848857a996d4a42872907aa165cc38f
63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information and Computing Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
67 schema:name Artificial Intelligence and Image Processing
68 rdf:type schema:DefinedTerm
69 sg:person.014121444104.73 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
70 schema:familyName Piette
71 schema:givenName Bernard
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
73 rdf:type schema:Person
74 sg:person.014640770123.34 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
75 schema:familyName Zakrzewski
76 schema:givenName Wojciech J.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014640770123.34
78 rdf:type schema:Person
79 https://doi.org/10.1016/0550-3213(90)90684-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003708014
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1063/1.523400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058100420
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1088/0951-7715/3/2/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110631
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1088/0951-7715/3/3/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110650
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
88 schema:name Department of Mathematical Sciences, University of Durham, DH1 3LE Durham, England
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...