Probabilistic reasoning with facts and rules in deductive databases View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

H. Thöne , U. Güntzer , W. Kießling

ABSTRACT

In this paper we present a new method for probabilistic reasoning with true facts and uncertain rules within a deductive database. Besides a cautious approach to inferences on uncertain rules, we show a default approach for uncertainty reasoning including factual knowledge, based on the ideas of maximal context and detachment. Integrated into a database these approaches support many important applications with probabilistic value dependencies. One sample application will be provided: Lead qualification within a marketing database. More... »

PAGES

333-337

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-54659-6_111

DOI

http://dx.doi.org/10.1007/3-540-54659-6_111

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007026399


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wilhelm-Schickard-Institut, Universit\u00e4t T\u00fcbingen, Sand 13, D-7400, T\u00fcbingen 1", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Wilhelm-Schickard-Institut, Universit\u00e4t T\u00fcbingen, Sand 13, D-7400, T\u00fcbingen 1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Th\u00f6ne", 
        "givenName": "H.", 
        "id": "sg:person.015345233121.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345233121.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wilhelm-Schickard-Institut, Universit\u00e4t T\u00fcbingen, Sand 13, D-7400, T\u00fcbingen 1", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Wilhelm-Schickard-Institut, Universit\u00e4t T\u00fcbingen, Sand 13, D-7400, T\u00fcbingen 1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcntzer", 
        "givenName": "U.", 
        "id": "sg:person.013324511711.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Informatik, Techn. Universit\u00e4t M\u00fcnchen, Orleansstr. 34, D-8000, M\u00fcnchen 80", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Institut f\u00fcr Informatik, Techn. Universit\u00e4t M\u00fcnchen, Orleansstr. 34, D-8000, M\u00fcnchen 80"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kie\u00dfling", 
        "givenName": "W.", 
        "id": "sg:person.07355710125.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355710125.73"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "In this paper we present a new method for probabilistic reasoning with true facts and uncertain rules within a deductive database. Besides a cautious approach to inferences on uncertain rules, we show a default approach for uncertainty reasoning including factual knowledge, based on the ideas of maximal context and detachment. Integrated into a database these approaches support many important applications with probabilistic value dependencies. One sample application will be provided: Lead qualification within a marketing database.", 
    "editor": [
      {
        "familyName": "Kruse", 
        "givenName": "Rudolf", 
        "type": "Person"
      }, 
      {
        "familyName": "Siegel", 
        "givenName": "Pierre", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-54659-6_111", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-54659-7", 
        "978-3-540-46426-6"
      ], 
      "name": "Symbolic and Quantitative Approaches to Uncertainty", 
      "type": "Book"
    }, 
    "keywords": [
      "deductive databases", 
      "uncertain rules", 
      "probabilistic reasoning", 
      "uncertainty reasoning", 
      "marketing database", 
      "sample application", 
      "value dependencies", 
      "reasoning", 
      "important applications", 
      "true facts", 
      "database", 
      "rules", 
      "default approach", 
      "new method", 
      "applications", 
      "inference", 
      "factual knowledge", 
      "dependency", 
      "idea", 
      "knowledge", 
      "context", 
      "method", 
      "fact", 
      "qualification", 
      "cautious approach", 
      "approach", 
      "paper", 
      "detachment", 
      "maximal context", 
      "probabilistic value dependencies"
    ], 
    "name": "Probabilistic reasoning with facts and rules in deductive databases", 
    "pagination": "333-337", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007026399"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-54659-6_111"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-54659-6_111", 
      "https://app.dimensions.ai/details/publication/pub.1007026399"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_327.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-54659-6_111"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-54659-6_111'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-54659-6_111'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-54659-6_111'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-54659-6_111'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      23 PREDICATES      56 URIs      49 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-54659-6_111 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Ndcb2a67ffde0450b8bff5bba5194e7e4
4 schema:datePublished 1991
5 schema:datePublishedReg 1991-01-01
6 schema:description In this paper we present a new method for probabilistic reasoning with true facts and uncertain rules within a deductive database. Besides a cautious approach to inferences on uncertain rules, we show a default approach for uncertainty reasoning including factual knowledge, based on the ideas of maximal context and detachment. Integrated into a database these approaches support many important applications with probabilistic value dependencies. One sample application will be provided: Lead qualification within a marketing database.
7 schema:editor N5cec31533809427a96f8738a1e957a80
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd490df6b4a8e4387b9a7ccf6f683419e
12 schema:keywords applications
13 approach
14 cautious approach
15 context
16 database
17 deductive databases
18 default approach
19 dependency
20 detachment
21 fact
22 factual knowledge
23 idea
24 important applications
25 inference
26 knowledge
27 marketing database
28 maximal context
29 method
30 new method
31 paper
32 probabilistic reasoning
33 probabilistic value dependencies
34 qualification
35 reasoning
36 rules
37 sample application
38 true facts
39 uncertain rules
40 uncertainty reasoning
41 value dependencies
42 schema:name Probabilistic reasoning with facts and rules in deductive databases
43 schema:pagination 333-337
44 schema:productId N0d8e76c88fca4a4fbc32a41e1d5be6ad
45 Nf43683897a8c4582b4509554ac6576cc
46 schema:publisher N888851c249bc45ebafbc6eb15a134124
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007026399
48 https://doi.org/10.1007/3-540-54659-6_111
49 schema:sdDatePublished 2022-01-01T19:19
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Ndab50d5f74904cb0929a019e30b184d4
52 schema:url https://doi.org/10.1007/3-540-54659-6_111
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N0d8e76c88fca4a4fbc32a41e1d5be6ad schema:name doi
57 schema:value 10.1007/3-540-54659-6_111
58 rdf:type schema:PropertyValue
59 N0f9ba9f8697c4a02931810943e0f5bd9 rdf:first sg:person.013324511711.75
60 rdf:rest N3b1f55cb075c4ac091de934a56251b0b
61 N23eb4d581e264306963e562386038866 schema:familyName Siegel
62 schema:givenName Pierre
63 rdf:type schema:Person
64 N3b1f55cb075c4ac091de934a56251b0b rdf:first sg:person.07355710125.73
65 rdf:rest rdf:nil
66 N5cec31533809427a96f8738a1e957a80 rdf:first N7550ddf1f1d443acac7ce1d2ad6cedf5
67 rdf:rest Nb13946537e1c47ef85fa67cb8dc934ac
68 N7550ddf1f1d443acac7ce1d2ad6cedf5 schema:familyName Kruse
69 schema:givenName Rudolf
70 rdf:type schema:Person
71 N888851c249bc45ebafbc6eb15a134124 schema:name Springer Nature
72 rdf:type schema:Organisation
73 Nb13946537e1c47ef85fa67cb8dc934ac rdf:first N23eb4d581e264306963e562386038866
74 rdf:rest rdf:nil
75 Nd490df6b4a8e4387b9a7ccf6f683419e schema:isbn 978-3-540-46426-6
76 978-3-540-54659-7
77 schema:name Symbolic and Quantitative Approaches to Uncertainty
78 rdf:type schema:Book
79 Ndab50d5f74904cb0929a019e30b184d4 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Ndcb2a67ffde0450b8bff5bba5194e7e4 rdf:first sg:person.015345233121.45
82 rdf:rest N0f9ba9f8697c4a02931810943e0f5bd9
83 Nf43683897a8c4582b4509554ac6576cc schema:name dimensions_id
84 schema:value pub.1007026399
85 rdf:type schema:PropertyValue
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information Systems
91 rdf:type schema:DefinedTerm
92 sg:person.013324511711.75 schema:affiliation grid-institutes:grid.10392.39
93 schema:familyName Güntzer
94 schema:givenName U.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75
96 rdf:type schema:Person
97 sg:person.015345233121.45 schema:affiliation grid-institutes:grid.10392.39
98 schema:familyName Thöne
99 schema:givenName H.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345233121.45
101 rdf:type schema:Person
102 sg:person.07355710125.73 schema:affiliation grid-institutes:grid.6936.a
103 schema:familyName Kießling
104 schema:givenName W.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355710125.73
106 rdf:type schema:Person
107 grid-institutes:grid.10392.39 schema:alternateName Wilhelm-Schickard-Institut, Universität Tübingen, Sand 13, D-7400, Tübingen 1
108 schema:name Wilhelm-Schickard-Institut, Universität Tübingen, Sand 13, D-7400, Tübingen 1
109 rdf:type schema:Organization
110 grid-institutes:grid.6936.a schema:alternateName Institut für Informatik, Techn. Universität München, Orleansstr. 34, D-8000, München 80
111 schema:name Institut für Informatik, Techn. Universität München, Orleansstr. 34, D-8000, München 80
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...