Convective nonovershooting in stellar cores View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1990

AUTHORS

D. Narasimha , H. M. Antia

ABSTRACT

Mixing-length approximation appears to be consistent with the normal mode analysis of the transport of heat flux due to turbulent convection, in the stellar core as well as in the envelope of stars of a range of spectral types and luminosity classes that we have investigated. However, in spite of demonstrating the self-consistency of the mixing length approximation we do not see any justification for accepting any constant multiple of the mixing-length as a measure of the scale length for convective overshooting into the radiative zones. The convective velocity field in the interior of model of a star of ZAMS mass 10M⊙ has been examined at three representative epochs during the main sequence phase, using the linear convective modes. The extent of overshooting is found to be less than O.1Hpin all the cases while the mixing-length within the convection zone is typically around 1/3Hp. More... »

PAGES

45-48

Book

TITLE

Progress of Seismology of the Sun and Stars

ISBN

978-3-540-53091-6
978-3-540-46645-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-53091-6_63

DOI

http://dx.doi.org/10.1007/3-540-53091-6_63

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046415107


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Theoretical Astrophysics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Bombay, India", 
          "id": "http://www.grid.ac/institutes/grid.22401.35", 
          "name": [
            "Theoretical Astrophysics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Bombay, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narasimha", 
        "givenName": "D.", 
        "id": "sg:person.016035744652.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035744652.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Astrophysics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Bombay, India", 
          "id": "http://www.grid.ac/institutes/grid.22401.35", 
          "name": [
            "Theoretical Astrophysics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Bombay, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antia", 
        "givenName": "H. M.", 
        "id": "sg:person.011311320105.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011311320105.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "Mixing-length approximation appears to be consistent with the normal mode analysis of the transport of heat flux due to turbulent convection, in the stellar core as well as in the envelope of stars of a range of spectral types and luminosity classes that we have investigated. However, in spite of demonstrating the self-consistency of the mixing length approximation we do not see any justification for accepting any constant multiple of the mixing-length as a measure of the scale length for convective overshooting into the radiative zones. The convective velocity field in the interior of model of a star of ZAMS mass 10M\u2299 has been examined at three representative epochs during the main sequence phase, using the linear convective modes. The extent of overshooting is found to be less than O.1Hpin all the cases while the mixing-length within the convection zone is typically around 1/3Hp.", 
    "editor": [
      {
        "familyName": "Osaki", 
        "givenName": "Y.", 
        "type": "Person"
      }, 
      {
        "familyName": "Shibahashi", 
        "givenName": "H.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-53091-6_63", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-53091-6", 
        "978-3-540-46645-1"
      ], 
      "name": "Progress of Seismology of the Sun and Stars", 
      "type": "Book"
    }, 
    "keywords": [
      "linear convective modes", 
      "mixing-length approximation", 
      "turbulent convection", 
      "heat flux", 
      "extent of overshooting", 
      "velocity field", 
      "convective velocity field", 
      "convection zone", 
      "convective modes", 
      "length approximation", 
      "radiative zone", 
      "scale length", 
      "convective overshooting", 
      "convection", 
      "mode analysis", 
      "representative epochs", 
      "envelopes of stars", 
      "zone", 
      "overshooting", 
      "flux", 
      "normal mode analysis", 
      "core", 
      "nonovershooting", 
      "main sequence phase", 
      "transport", 
      "phase", 
      "field", 
      "mode", 
      "approximation", 
      "interior", 
      "range", 
      "envelope", 
      "model", 
      "sequence phase", 
      "length", 
      "stellar core", 
      "ZAMS mass", 
      "mass", 
      "analysis", 
      "types", 
      "multiples", 
      "spite", 
      "cases", 
      "extent", 
      "class", 
      "justification", 
      "stars", 
      "measures", 
      "epoch", 
      "constant multiple", 
      "spectral type", 
      "luminosity classes", 
      "interior of model", 
      "Convective nonovershooting"
    ], 
    "name": "Convective nonovershooting in stellar cores", 
    "pagination": "45-48", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046415107"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-53091-6_63"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-53091-6_63", 
      "https://app.dimensions.ai/details/publication/pub.1046415107"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_436.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-53091-6_63"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-53091-6_63'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-53091-6_63'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-53091-6_63'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-53091-6_63'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      80 URIs      73 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-53091-6_63 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nb6de3049494a461f9d8bd33419e37946
4 schema:datePublished 1990
5 schema:datePublishedReg 1990-01-01
6 schema:description Mixing-length approximation appears to be consistent with the normal mode analysis of the transport of heat flux due to turbulent convection, in the stellar core as well as in the envelope of stars of a range of spectral types and luminosity classes that we have investigated. However, in spite of demonstrating the self-consistency of the mixing length approximation we do not see any justification for accepting any constant multiple of the mixing-length as a measure of the scale length for convective overshooting into the radiative zones. The convective velocity field in the interior of model of a star of ZAMS mass 10M⊙ has been examined at three representative epochs during the main sequence phase, using the linear convective modes. The extent of overshooting is found to be less than O.1Hpin all the cases while the mixing-length within the convection zone is typically around 1/3Hp.
7 schema:editor N172c28f7a948478298eb56a0c8504e79
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3cf113e3a0464c9686cdc71b82d0a1de
12 schema:keywords Convective nonovershooting
13 ZAMS mass
14 analysis
15 approximation
16 cases
17 class
18 constant multiple
19 convection
20 convection zone
21 convective modes
22 convective overshooting
23 convective velocity field
24 core
25 envelope
26 envelopes of stars
27 epoch
28 extent
29 extent of overshooting
30 field
31 flux
32 heat flux
33 interior
34 interior of model
35 justification
36 length
37 length approximation
38 linear convective modes
39 luminosity classes
40 main sequence phase
41 mass
42 measures
43 mixing-length approximation
44 mode
45 mode analysis
46 model
47 multiples
48 nonovershooting
49 normal mode analysis
50 overshooting
51 phase
52 radiative zone
53 range
54 representative epochs
55 scale length
56 sequence phase
57 spectral type
58 spite
59 stars
60 stellar core
61 transport
62 turbulent convection
63 types
64 velocity field
65 zone
66 schema:name Convective nonovershooting in stellar cores
67 schema:pagination 45-48
68 schema:productId Ndfd583f08efa46ffb3c92a97471a6a6e
69 Nf7b693ba38724b6a9b6c309049d560cc
70 schema:publisher N0856dff4ca5040f7bf42af77158f6798
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046415107
72 https://doi.org/10.1007/3-540-53091-6_63
73 schema:sdDatePublished 2021-12-01T20:10
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N08d87699bdd04518a8be28134f59934b
76 schema:url https://doi.org/10.1007/3-540-53091-6_63
77 sgo:license sg:explorer/license/
78 sgo:sdDataset chapters
79 rdf:type schema:Chapter
80 N0856dff4ca5040f7bf42af77158f6798 schema:name Springer Nature
81 rdf:type schema:Organisation
82 N08d87699bdd04518a8be28134f59934b schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N172c28f7a948478298eb56a0c8504e79 rdf:first Nb5efe873f7524553b9d0d5ec456c75dd
85 rdf:rest N1f05e46b86f6400bba48f887b7ed2ea6
86 N1f05e46b86f6400bba48f887b7ed2ea6 rdf:first N8177d1809a214b1f94465263ac76e249
87 rdf:rest rdf:nil
88 N3cf113e3a0464c9686cdc71b82d0a1de schema:isbn 978-3-540-46645-1
89 978-3-540-53091-6
90 schema:name Progress of Seismology of the Sun and Stars
91 rdf:type schema:Book
92 N8177d1809a214b1f94465263ac76e249 schema:familyName Shibahashi
93 schema:givenName H.
94 rdf:type schema:Person
95 Nb5efe873f7524553b9d0d5ec456c75dd schema:familyName Osaki
96 schema:givenName Y.
97 rdf:type schema:Person
98 Nb6de3049494a461f9d8bd33419e37946 rdf:first sg:person.016035744652.18
99 rdf:rest Nfe22d318b4d14df59433b0cae4556763
100 Ndfd583f08efa46ffb3c92a97471a6a6e schema:name doi
101 schema:value 10.1007/3-540-53091-6_63
102 rdf:type schema:PropertyValue
103 Nf7b693ba38724b6a9b6c309049d560cc schema:name dimensions_id
104 schema:value pub.1046415107
105 rdf:type schema:PropertyValue
106 Nfe22d318b4d14df59433b0cae4556763 rdf:first sg:person.011311320105.13
107 rdf:rest rdf:nil
108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
109 schema:name Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
112 schema:name Interdisciplinary Engineering
113 rdf:type schema:DefinedTerm
114 sg:person.011311320105.13 schema:affiliation grid-institutes:grid.22401.35
115 schema:familyName Antia
116 schema:givenName H. M.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011311320105.13
118 rdf:type schema:Person
119 sg:person.016035744652.18 schema:affiliation grid-institutes:grid.22401.35
120 schema:familyName Narasimha
121 schema:givenName D.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035744652.18
123 rdf:type schema:Person
124 grid-institutes:grid.22401.35 schema:alternateName Theoretical Astrophysics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Bombay, India
125 schema:name Theoretical Astrophysics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Bombay, India
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...