Image enhancement by path partitioning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

Mario Lucertini , Yehoshua Perl , Bruno Simeone

ABSTRACT

Image segmentation can be a useful tool in facing image degradation. In image segmentation the input is a set of pixels with given grey levels and the output is a partition of the set of pixels into connected regions ("classes"), so that a given set of requirements on the single classes and on adjacent classes is satisfied (i.e. pixels belonging to the same class must have approximately the same grey levels or the same textures and pixels belonging to adjacent classes must have significantly different grey levels or different textures). Once segmentation has been performed, the same grey level is associated with each pixel of the same class. The grey level can either be related to the original grey levels of the class, or can be given by a new grey scale on the ground of contrast optimization criteria. The segmentation technique proposed in this presentation is a method for finding the most homogeneous classes and the best possible contrast in a row by row image processing. In partitioning each row of the image, we have two aims: the partition must be as good as possible in its own right, and it must be as compatible as possible with the partitions of the other rows. If we take into account the two aims simultaneously, then the solution procedure becomes complex. To simplify and speed-up the procedure, we can partition each row independently, and then we can apply region merging techniques to the resulting set of row partitions. In the presentation the problem is formulated as a path partitioning one and a simple O(n p) row-partitioning algorithm based on a shortest path formulation of the problem is given. More... »

PAGES

12-22

References to SciGraph publications

Book

TITLE

Recent Issues in Pattern Analysis and Recognition

ISBN

978-3-540-51815-0
978-3-540-46815-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-51815-0_37

DOI

http://dx.doi.org/10.1007/3-540-51815-0_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021854713


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dept. Electrical Engineering, University of Roma \"Tor Vergata\", via O. Raimondo, 00173\u00a0Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lucertini", 
        "givenName": "Mario", 
        "id": "sg:person.07676374463.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676374463.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New Jersey Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.260896.3", 
          "name": [
            "Institute for Integrated System, Computer and Information Science Dept., New Jersey Inst. of Technology, 07102\u00a0Newark, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perl", 
        "givenName": "Yehoshua", 
        "id": "sg:person.01057035105.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057035105.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dept. of Statistics, University of Roma \"La Sapienza\", Piazza A.Moro 5, 00185\u00a0Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simeone", 
        "givenName": "Bruno", 
        "id": "sg:person.012600006066.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012600006066.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-88304-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000972405", 
          "https://doi.org/10.1007/978-3-642-88304-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88304-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000972405", 
          "https://doi.org/10.1007/978-3-642-88304-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(85)90053-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003972000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(85)90053-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003972000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0190(78)90030-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006177335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(78)90028-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007478206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(78)90028-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007478206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/322290.322294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010103860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/322234.322236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011364667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-6774(83)90039-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013044912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.3230130305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019857922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(85)90041-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043509144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(85)90041-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043509144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(79)90025-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045481224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(79)90025-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045481224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1987.4767955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0206012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841351"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "description": "Image segmentation can be a useful tool in facing image degradation. In image segmentation the input is a set of pixels with given grey levels and the output is a partition of the set of pixels into connected regions (\"classes\"), so that a given set of requirements on the single classes and on adjacent classes is satisfied (i.e. pixels belonging to the same class must have approximately the same grey levels or the same textures and pixels belonging to adjacent classes must have significantly different grey levels or different textures). Once segmentation has been performed, the same grey level is associated with each pixel of the same class. The grey level can either be related to the original grey levels of the class, or can be given by a new grey scale on the ground of contrast optimization criteria. The segmentation technique proposed in this presentation is a method for finding the most homogeneous classes and the best possible contrast in a row by row image processing. In partitioning each row of the image, we have two aims: the partition must be as good as possible in its own right, and it must be as compatible as possible with the partitions of the other rows. If we take into account the two aims simultaneously, then the solution procedure becomes complex. To simplify and speed-up the procedure, we can partition each row independently, and then we can apply region merging techniques to the resulting set of row partitions. In the presentation the problem is formulated as a path partitioning one and a simple O(n p) row-partitioning algorithm based on a shortest path formulation of the problem is given.", 
    "editor": [
      {
        "familyName": "Cantoni", 
        "givenName": "Virginio", 
        "type": "Person"
      }, 
      {
        "familyName": "Creutzburg", 
        "givenName": "Reiner", 
        "type": "Person"
      }, 
      {
        "familyName": "Levialdi", 
        "givenName": "Stefano", 
        "type": "Person"
      }, 
      {
        "familyName": "Wolf", 
        "givenName": "G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-51815-0_37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-51815-0", 
        "978-3-540-46815-8"
      ], 
      "name": "Recent Issues in Pattern Analysis and Recognition", 
      "type": "Book"
    }, 
    "name": "Image enhancement by path partitioning", 
    "pagination": "12-22", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-51815-0_37"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "681f370d7ad58ae100e703be512af3ae6a4b84ba2d88dd3c7a12121838cb5aa3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021854713"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-51815-0_37", 
      "https://app.dimensions.ai/details/publication/pub.1021854713"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000256.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-51815-0_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-51815-0_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-51815-0_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-51815-0_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-51815-0_37'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-51815-0_37 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5fba2182ab194da0abe8d4d00997c6ec
4 schema:citation sg:pub.10.1007/978-3-642-88304-0
5 https://doi.org/10.1002/net.3230130305
6 https://doi.org/10.1016/0020-0190(78)90030-3
7 https://doi.org/10.1016/0031-3203(78)90028-6
8 https://doi.org/10.1016/0031-3203(79)90025-6
9 https://doi.org/10.1016/0166-218x(85)90041-1
10 https://doi.org/10.1016/0167-8655(85)90053-4
11 https://doi.org/10.1016/0196-6774(83)90039-1
12 https://doi.org/10.1109/tpami.1987.4767955
13 https://doi.org/10.1137/0206012
14 https://doi.org/10.1145/322234.322236
15 https://doi.org/10.1145/322290.322294
16 schema:datePublished 1989
17 schema:datePublishedReg 1989-01-01
18 schema:description Image segmentation can be a useful tool in facing image degradation. In image segmentation the input is a set of pixels with given grey levels and the output is a partition of the set of pixels into connected regions ("classes"), so that a given set of requirements on the single classes and on adjacent classes is satisfied (i.e. pixels belonging to the same class must have approximately the same grey levels or the same textures and pixels belonging to adjacent classes must have significantly different grey levels or different textures). Once segmentation has been performed, the same grey level is associated with each pixel of the same class. The grey level can either be related to the original grey levels of the class, or can be given by a new grey scale on the ground of contrast optimization criteria. The segmentation technique proposed in this presentation is a method for finding the most homogeneous classes and the best possible contrast in a row by row image processing. In partitioning each row of the image, we have two aims: the partition must be as good as possible in its own right, and it must be as compatible as possible with the partitions of the other rows. If we take into account the two aims simultaneously, then the solution procedure becomes complex. To simplify and speed-up the procedure, we can partition each row independently, and then we can apply region merging techniques to the resulting set of row partitions. In the presentation the problem is formulated as a path partitioning one and a simple O(n p) row-partitioning algorithm based on a shortest path formulation of the problem is given.
19 schema:editor N2145e482e71b4a6c9fd1dbfd1239f2ca
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N60f81f9a8d0244a692c0cbbd465e3c22
24 schema:name Image enhancement by path partitioning
25 schema:pagination 12-22
26 schema:productId N150c1056d1114dcd83661db0c35621ec
27 N91be3b3e1c6f43e09189c4331cbb9239
28 Nceb851e920f4432cbd0a475c0a5a3cfb
29 schema:publisher N05a0941e5d8343028e169955b13aa5bd
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021854713
31 https://doi.org/10.1007/3-540-51815-0_37
32 schema:sdDatePublished 2019-04-15T16:16
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Na556c97c84eb45d6b3ed5b0be179dbb4
35 schema:url http://link.springer.com/10.1007/3-540-51815-0_37
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N05a0941e5d8343028e169955b13aa5bd schema:location Berlin, Heidelberg
40 schema:name Springer Berlin Heidelberg
41 rdf:type schema:Organisation
42 N150c1056d1114dcd83661db0c35621ec schema:name readcube_id
43 schema:value 681f370d7ad58ae100e703be512af3ae6a4b84ba2d88dd3c7a12121838cb5aa3
44 rdf:type schema:PropertyValue
45 N2145e482e71b4a6c9fd1dbfd1239f2ca rdf:first N6aa057ee4ade4209bbbd4188f2a48dfd
46 rdf:rest N9933641f91d14d49b288e327e6d3fafd
47 N36f5c80cf5404aac8ea4b1cf0f1c0e96 rdf:first Nc625df3b9a614ef0a9203b48030b9624
48 rdf:rest N7c4beee676024650982d39579b6fce04
49 N5f074db91f174e29ab0df164be0d8c22 rdf:first sg:person.01057035105.94
50 rdf:rest N7e73a685ff9743f58def4b24cc10dfb3
51 N5fba2182ab194da0abe8d4d00997c6ec rdf:first sg:person.07676374463.50
52 rdf:rest N5f074db91f174e29ab0df164be0d8c22
53 N60f81f9a8d0244a692c0cbbd465e3c22 schema:isbn 978-3-540-46815-8
54 978-3-540-51815-0
55 schema:name Recent Issues in Pattern Analysis and Recognition
56 rdf:type schema:Book
57 N6aa057ee4ade4209bbbd4188f2a48dfd schema:familyName Cantoni
58 schema:givenName Virginio
59 rdf:type schema:Person
60 N7c4beee676024650982d39579b6fce04 rdf:first N8ee97da4353443e689a57a1391a9c9a2
61 rdf:rest rdf:nil
62 N7e73a685ff9743f58def4b24cc10dfb3 rdf:first sg:person.012600006066.78
63 rdf:rest rdf:nil
64 N8ee97da4353443e689a57a1391a9c9a2 schema:familyName Wolf
65 schema:givenName G.
66 rdf:type schema:Person
67 N91be3b3e1c6f43e09189c4331cbb9239 schema:name doi
68 schema:value 10.1007/3-540-51815-0_37
69 rdf:type schema:PropertyValue
70 N9933641f91d14d49b288e327e6d3fafd rdf:first Nb34a799561744c2c84e76ede73abe239
71 rdf:rest N36f5c80cf5404aac8ea4b1cf0f1c0e96
72 Na556c97c84eb45d6b3ed5b0be179dbb4 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nb34a799561744c2c84e76ede73abe239 schema:familyName Creutzburg
75 schema:givenName Reiner
76 rdf:type schema:Person
77 Nc625df3b9a614ef0a9203b48030b9624 schema:familyName Levialdi
78 schema:givenName Stefano
79 rdf:type schema:Person
80 Nceb851e920f4432cbd0a475c0a5a3cfb schema:name dimensions_id
81 schema:value pub.1021854713
82 rdf:type schema:PropertyValue
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
87 schema:name Artificial Intelligence and Image Processing
88 rdf:type schema:DefinedTerm
89 sg:person.01057035105.94 schema:affiliation https://www.grid.ac/institutes/grid.260896.3
90 schema:familyName Perl
91 schema:givenName Yehoshua
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057035105.94
93 rdf:type schema:Person
94 sg:person.012600006066.78 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
95 schema:familyName Simeone
96 schema:givenName Bruno
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012600006066.78
98 rdf:type schema:Person
99 sg:person.07676374463.50 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
100 schema:familyName Lucertini
101 schema:givenName Mario
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676374463.50
103 rdf:type schema:Person
104 sg:pub.10.1007/978-3-642-88304-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000972405
105 https://doi.org/10.1007/978-3-642-88304-0
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/net.3230130305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019857922
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0020-0190(78)90030-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006177335
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0031-3203(78)90028-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007478206
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0031-3203(79)90025-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045481224
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0166-218x(85)90041-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043509144
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0167-8655(85)90053-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003972000
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0196-6774(83)90039-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013044912
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tpami.1987.4767955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742329
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1137/0206012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841351
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1145/322234.322236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011364667
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/322290.322294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010103860
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.260896.3 schema:alternateName New Jersey Institute of Technology
130 schema:name Institute for Integrated System, Computer and Information Science Dept., New Jersey Inst. of Technology, 07102 Newark, New Jersey, USA
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
133 schema:name Dept. Electrical Engineering, University of Roma "Tor Vergata", via O. Raimondo, 00173 Roma, Italy
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
136 schema:name Dept. of Statistics, University of Roma "La Sapienza", Piazza A.Moro 5, 00185 Roma, Italy
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...