Complexity and forecasting in dynamical systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1988

AUTHORS

Peter Grassberger

ABSTRACT

We discuss ways of defining complexity in physics, and in particular for symbol sequences typically arising in autonomous dynamical systems. We stress that complexity should be distinct from randomness. This leads us to consider the difficulty of making optimal forecasts as one (but not the only) suitable measure. This difficulty is discussed in detail for two different examples: left-right symbol sequences of quadratic maps and 0–1 sequences from 1-dimensional cellular automata iterated just one single time. In spite of the seeming triviality of the latter model, we encounter there an extremely rich structure. More... »

PAGES

1-21

Book

TITLE

Measures of Complexity

ISBN

978-3-540-50316-3
978-3-540-45968-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-50316-1_1

DOI

http://dx.doi.org/10.1007/3-540-50316-1_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009028301


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wuppertal", 
          "id": "https://www.grid.ac/institutes/grid.7787.f", 
          "name": [
            "Physics Department, University of Wuppertal, D - 5600 Wuppertal 1\u00a0Gauss-Strasse 20"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grassberger", 
        "givenName": "Peter", 
        "id": "sg:person.0704113004.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.1965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793965"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988", 
    "datePublishedReg": "1988-01-01", 
    "description": "We discuss ways of defining complexity in physics, and in particular for symbol sequences typically arising in autonomous dynamical systems. We stress that complexity should be distinct from randomness. This leads us to consider the difficulty of making optimal forecasts as one (but not the only) suitable measure. This difficulty is discussed in detail for two different examples: left-right symbol sequences of quadratic maps and 0\u20131 sequences from 1-dimensional cellular automata iterated just one single time. In spite of the seeming triviality of the latter model, we encounter there an extremely rich structure.", 
    "editor": [
      {
        "familyName": "Peliti", 
        "givenName": "L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vulpiani", 
        "givenName": "A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-50316-1_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-50316-3", 
        "978-3-540-45968-2"
      ], 
      "name": "Measures of Complexity", 
      "type": "Book"
    }, 
    "name": "Complexity and forecasting in dynamical systems", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-50316-1_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2b02dfc615bb5e3ea7b087204b73a30488b8f921486775824d095676252dfe50"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009028301"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-50316-1_1", 
      "https://app.dimensions.ai/details/publication/pub.1009028301"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000015.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/3-540-50316-1_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-50316-1_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-50316-1_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-50316-1_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-50316-1_1'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-50316-1_1 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nb01b79f23ac44f278c2cb2f271cc47ff
4 schema:citation https://doi.org/10.1103/physrevlett.57.1965
5 schema:datePublished 1988
6 schema:datePublishedReg 1988-01-01
7 schema:description We discuss ways of defining complexity in physics, and in particular for symbol sequences typically arising in autonomous dynamical systems. We stress that complexity should be distinct from randomness. This leads us to consider the difficulty of making optimal forecasts as one (but not the only) suitable measure. This difficulty is discussed in detail for two different examples: left-right symbol sequences of quadratic maps and 0–1 sequences from 1-dimensional cellular automata iterated just one single time. In spite of the seeming triviality of the latter model, we encounter there an extremely rich structure.
8 schema:editor N314518bb46064c5db3eb3033aa25bbdf
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N535d577cb6b84f368f0f57b4ea7a67de
13 schema:name Complexity and forecasting in dynamical systems
14 schema:pagination 1-21
15 schema:productId N864d65c2c984405487c68fca07647f21
16 Nccffe62391e245308e6659627bedd81d
17 Nf1d01adebacf4206bda96b90d72816d1
18 schema:publisher N85be38f0a1b84903837cb8ec66dfbf3b
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009028301
20 https://doi.org/10.1007/3-540-50316-1_1
21 schema:sdDatePublished 2019-04-15T16:01
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nf88327574e744a41b819e3a07e7f8623
24 schema:url http://link.springer.com/10.1007/3-540-50316-1_1
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N314518bb46064c5db3eb3033aa25bbdf rdf:first Nf270e8e7d2b649a5b9955e95455f7da4
29 rdf:rest Nc712146f7ebd45eaa0b2d5017a32cec1
30 N535d577cb6b84f368f0f57b4ea7a67de schema:isbn 978-3-540-45968-2
31 978-3-540-50316-3
32 schema:name Measures of Complexity
33 rdf:type schema:Book
34 N85be38f0a1b84903837cb8ec66dfbf3b schema:location Berlin, Heidelberg
35 schema:name Springer Berlin Heidelberg
36 rdf:type schema:Organisation
37 N864d65c2c984405487c68fca07647f21 schema:name doi
38 schema:value 10.1007/3-540-50316-1_1
39 rdf:type schema:PropertyValue
40 Nb01b79f23ac44f278c2cb2f271cc47ff rdf:first sg:person.0704113004.84
41 rdf:rest rdf:nil
42 Nc712146f7ebd45eaa0b2d5017a32cec1 rdf:first Neaa7f9711eab4450b1275a109ae68da2
43 rdf:rest rdf:nil
44 Nccffe62391e245308e6659627bedd81d schema:name readcube_id
45 schema:value 2b02dfc615bb5e3ea7b087204b73a30488b8f921486775824d095676252dfe50
46 rdf:type schema:PropertyValue
47 Neaa7f9711eab4450b1275a109ae68da2 schema:familyName Vulpiani
48 schema:givenName A.
49 rdf:type schema:Person
50 Nf1d01adebacf4206bda96b90d72816d1 schema:name dimensions_id
51 schema:value pub.1009028301
52 rdf:type schema:PropertyValue
53 Nf270e8e7d2b649a5b9955e95455f7da4 schema:familyName Peliti
54 schema:givenName L.
55 rdf:type schema:Person
56 Nf88327574e744a41b819e3a07e7f8623 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
62 schema:name Applied Mathematics
63 rdf:type schema:DefinedTerm
64 sg:person.0704113004.84 schema:affiliation https://www.grid.ac/institutes/grid.7787.f
65 schema:familyName Grassberger
66 schema:givenName Peter
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84
68 rdf:type schema:Person
69 https://doi.org/10.1103/physrevlett.57.1965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793965
70 rdf:type schema:CreativeWork
71 https://www.grid.ac/institutes/grid.7787.f schema:alternateName University of Wuppertal
72 schema:name Physics Department, University of Wuppertal, D - 5600 Wuppertal 1 Gauss-Strasse 20
73 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...