Real-Time Maintenance of Figure-Ground Segmentation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Peter Nordlund , Jan-Olof Eklundh

ABSTRACT

An approach to figure-ground segmentation based on a 2-dimensional histogram in feature space is presented. The histogram is then analyzed with a peak-finding algorithm designed with real-time performance in mind. The most significant peaks in the histogram are back-projected to the image to produce an object mask.The method is applied to segmentation based on a 2-D color space and also on a combination of motion and stereo disparities.Experiments with a system grabbing images direct from a CCD-camera with real-time performance having typical frame-rates of about 10 Hz is presented. More... »

PAGES

115-134

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-49256-9_8

DOI

http://dx.doi.org/10.1007/3-540-49256-9_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006683663


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nordlund", 
        "givenName": "Peter", 
        "id": "sg:person.015250537731.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015250537731.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eklundh", 
        "givenName": "Jan-Olof", 
        "id": "sg:person.014400652155.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "An approach to figure-ground segmentation based on a 2-dimensional histogram in feature space is presented. The histogram is then analyzed with a peak-finding algorithm designed with real-time performance in mind. The most significant peaks in the histogram are back-projected to the image to produce an object mask.The method is applied to segmentation based on a 2-D color space and also on a combination of motion and stereo disparities.Experiments with a system grabbing images direct from a CCD-camera with real-time performance having typical frame-rates of about 10 Hz is presented.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-49256-9_8", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-65459-9", 
        "978-3-540-49256-6"
      ], 
      "name": "Computer Vision Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "figure-ground segmentation", 
      "combination of motion", 
      "object mask", 
      "stereo disparity", 
      "mind", 
      "feature space", 
      "real-time maintenance", 
      "performance", 
      "color space", 
      "real-time performance", 
      "segmentation", 
      "images", 
      "maintenance", 
      "disparities", 
      "experiments", 
      "approach", 
      "mask", 
      "space", 
      "histogram", 
      "motion", 
      "combination", 
      "system", 
      "method", 
      "Hz", 
      "CCD camera", 
      "significant peaks", 
      "algorithm", 
      "peak-finding algorithm", 
      "peak"
    ], 
    "name": "Real-Time Maintenance of Figure-Ground Segmentation", 
    "pagination": "115-134", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006683663"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-49256-9_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-49256-9_8", 
      "https://app.dimensions.ai/details/publication/pub.1006683663"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_469.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-49256-9_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-49256-9_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-49256-9_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-49256-9_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-49256-9_8'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      53 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-49256-9_8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc09be006fc3740ee9eeeeca792bf86ef
4 schema:datePublished 1999
5 schema:datePublishedReg 1999-01-01
6 schema:description An approach to figure-ground segmentation based on a 2-dimensional histogram in feature space is presented. The histogram is then analyzed with a peak-finding algorithm designed with real-time performance in mind. The most significant peaks in the histogram are back-projected to the image to produce an object mask.The method is applied to segmentation based on a 2-D color space and also on a combination of motion and stereo disparities.Experiments with a system grabbing images direct from a CCD-camera with real-time performance having typical frame-rates of about 10 Hz is presented.
7 schema:genre chapter
8 schema:isAccessibleForFree false
9 schema:isPartOf Ndc33b5bf289d4e3c97c8a186b9d11c21
10 schema:keywords CCD camera
11 Hz
12 algorithm
13 approach
14 color space
15 combination
16 combination of motion
17 disparities
18 experiments
19 feature space
20 figure-ground segmentation
21 histogram
22 images
23 maintenance
24 mask
25 method
26 mind
27 motion
28 object mask
29 peak
30 peak-finding algorithm
31 performance
32 real-time maintenance
33 real-time performance
34 segmentation
35 significant peaks
36 space
37 stereo disparity
38 system
39 schema:name Real-Time Maintenance of Figure-Ground Segmentation
40 schema:pagination 115-134
41 schema:productId N4ff08c76efaf4982963e8b0c14fe2b33
42 Necffeeabaf844e1ea886b876fca1a529
43 schema:publisher N2ed6be218d6a4197abe766b0d12eedec
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006683663
45 https://doi.org/10.1007/3-540-49256-9_8
46 schema:sdDatePublished 2022-12-01T06:54
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N4a83dcaa87d14539952e2a59537f633b
49 schema:url https://doi.org/10.1007/3-540-49256-9_8
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N0d84b46c68e5472a90d94b6c093a2061 rdf:first sg:person.014400652155.17
54 rdf:rest rdf:nil
55 N2ed6be218d6a4197abe766b0d12eedec schema:name Springer Nature
56 rdf:type schema:Organisation
57 N4a83dcaa87d14539952e2a59537f633b schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N4ff08c76efaf4982963e8b0c14fe2b33 schema:name dimensions_id
60 schema:value pub.1006683663
61 rdf:type schema:PropertyValue
62 Nc09be006fc3740ee9eeeeca792bf86ef rdf:first sg:person.015250537731.93
63 rdf:rest N0d84b46c68e5472a90d94b6c093a2061
64 Ndc33b5bf289d4e3c97c8a186b9d11c21 schema:isbn 978-3-540-49256-6
65 978-3-540-65459-9
66 schema:name Computer Vision Systems
67 rdf:type schema:Book
68 Necffeeabaf844e1ea886b876fca1a529 schema:name doi
69 schema:value 10.1007/3-540-49256-9_8
70 rdf:type schema:PropertyValue
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:person.014400652155.17 schema:affiliation grid-institutes:grid.5037.1
78 schema:familyName Eklundh
79 schema:givenName Jan-Olof
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17
81 rdf:type schema:Person
82 sg:person.015250537731.93 schema:affiliation grid-institutes:grid.5037.1
83 schema:familyName Nordlund
84 schema:givenName Peter
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015250537731.93
86 rdf:type schema:Person
87 grid-institutes:grid.5037.1 schema:alternateName Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden
88 schema:name Computational Vision and Active Perception Laboratory (CVAP) Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...