An Optical Approach to Quantum Computing View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1999-05-21

AUTHORS

J. D. Franson , T. B. Pittman

ABSTRACT

Any realistic approach to quantum computing must be capable of implementing a sufficiently large number of qubits to perform useful computations. It has been estimated that 104 qubits may be required to implement Shor’s factoring algorithm for integers of useful size, and that this number may grow to 10 6 qubits when the redundant bits required for quantum error correction are included. Many of the quantum computer implementations currently being investigated, such as ion traps or NMR techniques, provide a reasonably straight-forward method for implementing a few qubits but are subject to fundamental limitations on the number of qubits that can be implemented [1], [2]. More... »

PAGES

383-390

Book

TITLE

Quantum Computing and Quantum Communications

ISBN

978-3-540-65514-5
978-3-540-49208-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-49208-9_35

DOI

http://dx.doi.org/10.1007/3-540-49208-9_35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013017760


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Applied Physics Laboratory, The Johns Hopkins University, 20723, Laurel, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franson", 
        "givenName": "J. D.", 
        "id": "sg:person.01217127326.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217127326.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Applied Physics Laboratory, The Johns Hopkins University, 20723, Laurel, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pittman", 
        "givenName": "T. B.", 
        "id": "sg:person.010215746347.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010215746347.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.277.5332.1688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026184182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044658333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044658333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.2124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.2124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815252"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-05-21", 
    "datePublishedReg": "1999-05-21", 
    "description": "Any realistic approach to quantum computing must be capable of implementing a sufficiently large number of qubits to perform useful computations. It has been estimated that 104 qubits may be required to implement Shor\u2019s factoring algorithm for integers of useful size, and that this number may grow to 10 6 qubits when the redundant bits required for quantum error correction are included. Many of the quantum computer implementations currently being investigated, such as ion traps or NMR techniques, provide a reasonably straight-forward method for implementing a few qubits but are subject to fundamental limitations on the number of qubits that can be implemented [1], [2].", 
    "editor": [
      {
        "familyName": "Williams", 
        "givenName": "Colin P.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-49208-9_35", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-65514-5", 
        "978-3-540-49208-5"
      ], 
      "name": "Quantum Computing and Quantum Communications", 
      "type": "Book"
    }, 
    "name": "An Optical Approach to Quantum Computing", 
    "pagination": "383-390", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-49208-9_35"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e03f7f47de76556ffc353f401baefb4bd6461fbf10c14e52297051842a5b265"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013017760"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-49208-9_35", 
      "https://app.dimensions.ai/details/publication/pub.1013017760"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64091_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-49208-9_35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-49208-9_35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-49208-9_35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-49208-9_35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-49208-9_35'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      23 PREDICATES      30 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-49208-9_35 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N757e1ad8b3cd4968b3ec58c37d9a29b5
4 schema:citation https://doi.org/10.1103/physrevlett.62.2124
5 https://doi.org/10.1103/physrevlett.75.4710
6 https://doi.org/10.1103/physrevlett.78.3852
7 https://doi.org/10.1126/science.277.5332.1688
8 schema:datePublished 1999-05-21
9 schema:datePublishedReg 1999-05-21
10 schema:description Any realistic approach to quantum computing must be capable of implementing a sufficiently large number of qubits to perform useful computations. It has been estimated that 104 qubits may be required to implement Shor’s factoring algorithm for integers of useful size, and that this number may grow to 10 6 qubits when the redundant bits required for quantum error correction are included. Many of the quantum computer implementations currently being investigated, such as ion traps or NMR techniques, provide a reasonably straight-forward method for implementing a few qubits but are subject to fundamental limitations on the number of qubits that can be implemented [1], [2].
11 schema:editor N9d95eb187ba44dfcb368444f063c3d79
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N212652896177439ca7a1766b3bf831d1
16 schema:name An Optical Approach to Quantum Computing
17 schema:pagination 383-390
18 schema:productId N6908edc1f60740d096cceb0f0036f620
19 N8f55e65ea344447089c19e97190a175c
20 N97d4446db8a4441e8fcfed24febc7f56
21 schema:publisher N8a273d9317e144c48f568d0fed9198e3
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013017760
23 https://doi.org/10.1007/3-540-49208-9_35
24 schema:sdDatePublished 2019-04-16T05:24
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N4cd1fea4a7ef4400ba7bb4c54025035e
27 schema:url https://link.springer.com/10.1007%2F3-540-49208-9_35
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N1f0941e57c644da38c012b0b6474b8ab rdf:first sg:person.010215746347.91
32 rdf:rest rdf:nil
33 N212652896177439ca7a1766b3bf831d1 schema:isbn 978-3-540-49208-5
34 978-3-540-65514-5
35 schema:name Quantum Computing and Quantum Communications
36 rdf:type schema:Book
37 N4cd1fea4a7ef4400ba7bb4c54025035e schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N6908edc1f60740d096cceb0f0036f620 schema:name doi
40 schema:value 10.1007/3-540-49208-9_35
41 rdf:type schema:PropertyValue
42 N757e1ad8b3cd4968b3ec58c37d9a29b5 rdf:first sg:person.01217127326.79
43 rdf:rest N1f0941e57c644da38c012b0b6474b8ab
44 N89ed84138ede4e1abc91998b11008711 schema:familyName Williams
45 schema:givenName Colin P.
46 rdf:type schema:Person
47 N8a273d9317e144c48f568d0fed9198e3 schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 N8f55e65ea344447089c19e97190a175c schema:name dimensions_id
51 schema:value pub.1013017760
52 rdf:type schema:PropertyValue
53 N97d4446db8a4441e8fcfed24febc7f56 schema:name readcube_id
54 schema:value 3e03f7f47de76556ffc353f401baefb4bd6461fbf10c14e52297051842a5b265
55 rdf:type schema:PropertyValue
56 N9d95eb187ba44dfcb368444f063c3d79 rdf:first N89ed84138ede4e1abc91998b11008711
57 rdf:rest rdf:nil
58 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
59 schema:name Physical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
62 schema:name Quantum Physics
63 rdf:type schema:DefinedTerm
64 sg:person.010215746347.91 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
65 schema:familyName Pittman
66 schema:givenName T. B.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010215746347.91
68 rdf:type schema:Person
69 sg:person.01217127326.79 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
70 schema:familyName Franson
71 schema:givenName J. D.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217127326.79
73 rdf:type schema:Person
74 https://doi.org/10.1103/physrevlett.62.2124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798703
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/physrevlett.75.4710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044658333
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1103/physrevlett.78.3852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815252
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1126/science.277.5332.1688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026184182
81 rdf:type schema:CreativeWork
82 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
83 schema:name Applied Physics Laboratory, The Johns Hopkins University, 20723, Laurel, MD, USA
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...