Worst-Case Equilibria View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-04-12

AUTHORS

Elias Koutsoupias , Christos Papadimitriou

ABSTRACT

In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a very simple network leads to some interesting mathematics, results, and open problems. More... »

PAGES

404-413

Book

TITLE

STACS 99

ISBN

978-3-540-65691-3
978-3-540-49116-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-49116-3_38

DOI

http://dx.doi.org/10.1007/3-540-49116-3_38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002207134


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Univ of California, Los Angeles"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koutsoupias", 
        "givenName": "Elias", 
        "id": "sg:person.016555647611.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016555647611.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Univ of California, Berkeley"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Papadimitriou", 
        "givenName": "Christos", 
        "id": "sg:person.013233165465.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233165465.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/210346.210415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003842655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/49.414643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061177258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0209007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841496"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-04-12", 
    "datePublishedReg": "2002-04-12", 
    "description": "In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a very simple network leads to some interesting mathematics, results, and open problems.", 
    "editor": [
      {
        "familyName": "Meinel", 
        "givenName": "Christoph", 
        "type": "Person"
      }, 
      {
        "familyName": "Tison", 
        "givenName": "Sophie", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-49116-3_38", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-65691-3", 
        "978-3-540-49116-3"
      ], 
      "name": "STACS 99", 
      "type": "Book"
    }, 
    "name": "Worst-Case Equilibria", 
    "pagination": "404-413", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-49116-3_38"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a82646b89019b5b63595400be32ca5b7788e02f685aa9403e5146c47ad01720"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002207134"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-49116-3_38", 
      "https://app.dimensions.ai/details/publication/pub.1002207134"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64115_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-49116-3_38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-49116-3_38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-49116-3_38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-49116-3_38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-49116-3_38'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      23 PREDICATES      29 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-49116-3_38 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N96409b11a68e43e3b6dbfd8ceb6a1967
4 schema:citation https://doi.org/10.1109/49.414643
5 https://doi.org/10.1137/0209007
6 https://doi.org/10.1145/210346.210415
7 schema:datePublished 2002-04-12
8 schema:datePublishedReg 2002-04-12
9 schema:description In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a very simple network leads to some interesting mathematics, results, and open problems.
10 schema:editor N480efc9e70884bd0855eaaf73fdb2a3b
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N4b5e6698c939475e9df5790ac52fe514
15 schema:name Worst-Case Equilibria
16 schema:pagination 404-413
17 schema:productId N1f25e7a9188c472885823d48e76dbc63
18 Nac638e0e32544975974b840c8f6f0b54
19 Nf5f78346d2f341db97dcc177bbbfad36
20 schema:publisher N1339c2040091414f8d89c92fa443178a
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002207134
22 https://doi.org/10.1007/3-540-49116-3_38
23 schema:sdDatePublished 2019-04-16T05:27
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N039f35d6623c4e4d8c92e2412a38a7b8
26 schema:url https://link.springer.com/10.1007%2F3-540-49116-3_38
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N039f35d6623c4e4d8c92e2412a38a7b8 schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N1339c2040091414f8d89c92fa443178a schema:location Berlin, Heidelberg
33 schema:name Springer Berlin Heidelberg
34 rdf:type schema:Organisation
35 N1f25e7a9188c472885823d48e76dbc63 schema:name dimensions_id
36 schema:value pub.1002207134
37 rdf:type schema:PropertyValue
38 N480efc9e70884bd0855eaaf73fdb2a3b rdf:first Nf18e6ee735864617b5e14fc3f36aeadb
39 rdf:rest N908ba0ed14354e149be83fa9677aeb0a
40 N4b5e6698c939475e9df5790ac52fe514 schema:isbn 978-3-540-49116-3
41 978-3-540-65691-3
42 schema:name STACS 99
43 rdf:type schema:Book
44 N908ba0ed14354e149be83fa9677aeb0a rdf:first Nd8ec42af6a9c4661aeeee9621e4c4447
45 rdf:rest rdf:nil
46 N96409b11a68e43e3b6dbfd8ceb6a1967 rdf:first sg:person.016555647611.20
47 rdf:rest Nc4291553cbe84f2c827c8352f2211970
48 Nac638e0e32544975974b840c8f6f0b54 schema:name readcube_id
49 schema:value 0a82646b89019b5b63595400be32ca5b7788e02f685aa9403e5146c47ad01720
50 rdf:type schema:PropertyValue
51 Nc4291553cbe84f2c827c8352f2211970 rdf:first sg:person.013233165465.63
52 rdf:rest rdf:nil
53 Nd8ec42af6a9c4661aeeee9621e4c4447 schema:familyName Tison
54 schema:givenName Sophie
55 rdf:type schema:Person
56 Nf18e6ee735864617b5e14fc3f36aeadb schema:familyName Meinel
57 schema:givenName Christoph
58 rdf:type schema:Person
59 Nf5f78346d2f341db97dcc177bbbfad36 schema:name doi
60 schema:value 10.1007/3-540-49116-3_38
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:person.013233165465.63 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
69 schema:familyName Papadimitriou
70 schema:givenName Christos
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233165465.63
72 rdf:type schema:Person
73 sg:person.016555647611.20 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
74 schema:familyName Koutsoupias
75 schema:givenName Elias
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016555647611.20
77 rdf:type schema:Person
78 https://doi.org/10.1109/49.414643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061177258
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1137/0209007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841496
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1145/210346.210415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003842655
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
85 schema:name Univ of California, Los Angeles
86 rdf:type schema:Organization
87 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
88 schema:name Univ of California, Berkeley
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...