Multi-objective Optimization in Evolutionary Algorithms Using Satisfiability Classes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Nicole Drechsler , Rolf Drechsler , Bernd Becker

ABSTRACT

Many optimization problems consist of several mutually dependent subproblems, where the resulting solutions must satisfy all requirements.We propose a new model for Multi-Objective Optimization (MOO) in Evolutionary Algorithms (EAs). The search space is partitioned into so-called Satisfiability Classes (SC), where each region represents the quality of the optimization criteria. Applying the SCs to individuals in a population a fitness can be assigned during the EA run. The model also allows the handling of infeasible regions and restrictions in the search space. Additionally, different priorities for optimization objectives can be modeled. Advantages of the model over previous approaches are discussed and an application is given that shows the superiority of the method for modeling MOO problems. More... »

PAGES

108-117

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-48774-3_14

DOI

http://dx.doi.org/10.1007/3-540-48774-3_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020447058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drechsler", 
        "givenName": "Nicole", 
        "id": "sg:person.011501544041.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011501544041.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drechsler", 
        "givenName": "Rolf", 
        "id": "sg:person.014026337551.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026337551.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becker", 
        "givenName": "Bernd", 
        "id": "sg:person.0654323315.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654323315.29"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "Many optimization problems consist of several mutually dependent subproblems, where the resulting solutions must satisfy all requirements.We propose a new model for Multi-Objective Optimization (MOO) in Evolutionary Algorithms (EAs). The search space is partitioned into so-called Satisfiability Classes (SC), where each region represents the quality of the optimization criteria. Applying the SCs to individuals in a population a fitness can be assigned during the EA run. The model also allows the handling of infeasible regions and restrictions in the search space. Additionally, different priorities for optimization objectives can be modeled. Advantages of the model over previous approaches are discussed and an application is given that shows the superiority of the method for modeling MOO problems.", 
    "editor": [
      {
        "familyName": "Reusch", 
        "givenName": "Bernd", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-48774-3_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-66050-7", 
        "978-3-540-48774-6"
      ], 
      "name": "Computational Intelligence", 
      "type": "Book"
    }, 
    "keywords": [
      "multi-objective optimization", 
      "evolutionary algorithm", 
      "search space", 
      "dependent subproblems", 
      "MOO problem", 
      "optimization problem", 
      "infeasible regions", 
      "optimization objective", 
      "EA run", 
      "optimization criteria", 
      "optimization", 
      "algorithm", 
      "previous approaches", 
      "problem", 
      "space", 
      "class", 
      "subproblems", 
      "new model", 
      "different priorities", 
      "model", 
      "solution", 
      "superiority", 
      "approach", 
      "applications", 
      "restriction", 
      "requirements", 
      "advantages", 
      "criteria", 
      "run", 
      "objective", 
      "handling", 
      "quality", 
      "method", 
      "priority", 
      "region", 
      "fitness", 
      "population", 
      "individuals", 
      "Satisfiability Classes"
    ], 
    "name": "Multi-objective Optimization in Evolutionary Algorithms Using Satisfiability Classes", 
    "pagination": "108-117", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020447058"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-48774-3_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-48774-3_14", 
      "https://app.dimensions.ai/details/publication/pub.1020447058"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_316.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-48774-3_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-48774-3_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-48774-3_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-48774-3_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-48774-3_14'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      66 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-48774-3_14 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author N3078c9b25164426d9c792d5e5abc564b
5 schema:datePublished 1999
6 schema:datePublishedReg 1999-01-01
7 schema:description Many optimization problems consist of several mutually dependent subproblems, where the resulting solutions must satisfy all requirements.We propose a new model for Multi-Objective Optimization (MOO) in Evolutionary Algorithms (EAs). The search space is partitioned into so-called Satisfiability Classes (SC), where each region represents the quality of the optimization criteria. Applying the SCs to individuals in a population a fitness can be assigned during the EA run. The model also allows the handling of infeasible regions and restrictions in the search space. Additionally, different priorities for optimization objectives can be modeled. Advantages of the model over previous approaches are discussed and an application is given that shows the superiority of the method for modeling MOO problems.
8 schema:editor N1216066433874852af39af83b8895dc8
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N6650f9baddb34d759ae0ae86d86540eb
13 schema:keywords EA run
14 MOO problem
15 Satisfiability Classes
16 advantages
17 algorithm
18 applications
19 approach
20 class
21 criteria
22 dependent subproblems
23 different priorities
24 evolutionary algorithm
25 fitness
26 handling
27 individuals
28 infeasible regions
29 method
30 model
31 multi-objective optimization
32 new model
33 objective
34 optimization
35 optimization criteria
36 optimization objective
37 optimization problem
38 population
39 previous approaches
40 priority
41 problem
42 quality
43 region
44 requirements
45 restriction
46 run
47 search space
48 solution
49 space
50 subproblems
51 superiority
52 schema:name Multi-objective Optimization in Evolutionary Algorithms Using Satisfiability Classes
53 schema:pagination 108-117
54 schema:productId N30577cf6b8af4a34b8b3de43ba576d74
55 N3434fe7a173b423a91289295bcf95117
56 schema:publisher Nda246ee938e042ffa232994db5d38adb
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020447058
58 https://doi.org/10.1007/3-540-48774-3_14
59 schema:sdDatePublished 2021-11-01T18:55
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N268367c25e384959a0307168cb5b4a55
62 schema:url https://doi.org/10.1007/3-540-48774-3_14
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N1216066433874852af39af83b8895dc8 rdf:first Neb24bbd9479940a9a15ec13b00c19fd1
67 rdf:rest rdf:nil
68 N268367c25e384959a0307168cb5b4a55 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N30577cf6b8af4a34b8b3de43ba576d74 schema:name doi
71 schema:value 10.1007/3-540-48774-3_14
72 rdf:type schema:PropertyValue
73 N3078c9b25164426d9c792d5e5abc564b rdf:first sg:person.011501544041.69
74 rdf:rest N5838ce130cad4e6a8a2f3ad9708349c2
75 N3434fe7a173b423a91289295bcf95117 schema:name dimensions_id
76 schema:value pub.1020447058
77 rdf:type schema:PropertyValue
78 N5838ce130cad4e6a8a2f3ad9708349c2 rdf:first sg:person.014026337551.82
79 rdf:rest Nbcdc2fc7f6234f1686e6a4f918645c7c
80 N6650f9baddb34d759ae0ae86d86540eb schema:isbn 978-3-540-48774-6
81 978-3-540-66050-7
82 schema:name Computational Intelligence
83 rdf:type schema:Book
84 Nbcdc2fc7f6234f1686e6a4f918645c7c rdf:first sg:person.0654323315.29
85 rdf:rest rdf:nil
86 Nda246ee938e042ffa232994db5d38adb schema:name Springer Nature
87 rdf:type schema:Organisation
88 Neb24bbd9479940a9a15ec13b00c19fd1 schema:familyName Reusch
89 schema:givenName Bernd
90 rdf:type schema:Person
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
95 schema:name Applied Mathematics
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
98 schema:name Numerical and Computational Mathematics
99 rdf:type schema:DefinedTerm
100 sg:person.011501544041.69 schema:affiliation grid-institutes:None
101 schema:familyName Drechsler
102 schema:givenName Nicole
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011501544041.69
104 rdf:type schema:Person
105 sg:person.014026337551.82 schema:affiliation grid-institutes:None
106 schema:familyName Drechsler
107 schema:givenName Rolf
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026337551.82
109 rdf:type schema:Person
110 sg:person.0654323315.29 schema:affiliation grid-institutes:None
111 schema:familyName Becker
112 schema:givenName Bernd
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654323315.29
114 rdf:type schema:Person
115 grid-institutes:None schema:alternateName Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany
116 schema:name Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...