Multi-objective Optimization in Evolutionary Algorithms Using Satisfiability Classes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Nicole Drechsler , Rolf Drechsler , Bernd Becker

ABSTRACT

Many optimization problems consist of several mutually dependent subproblems, where the resulting solutions must satisfy all requirements.We propose a new model for Multi-Objective Optimization (MOO) in Evolutionary Algorithms (EAs). The search space is partitioned into so-called Satisfiability Classes (SC), where each region represents the quality of the optimization criteria. Applying the SCs to individuals in a population a fitness can be assigned during the EA run. The model also allows the handling of infeasible regions and restrictions in the search space. Additionally, different priorities for optimization objectives can be modeled. Advantages of the model over previous approaches are discussed and an application is given that shows the superiority of the method for modeling MOO problems. More... »

PAGES

108-117

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-48774-3_14

DOI

http://dx.doi.org/10.1007/3-540-48774-3_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020447058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drechsler", 
        "givenName": "Nicole", 
        "id": "sg:person.011501544041.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011501544041.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drechsler", 
        "givenName": "Rolf", 
        "id": "sg:person.014026337551.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026337551.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becker", 
        "givenName": "Bernd", 
        "id": "sg:person.0654323315.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654323315.29"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "Many optimization problems consist of several mutually dependent subproblems, where the resulting solutions must satisfy all requirements.We propose a new model for Multi-Objective Optimization (MOO) in Evolutionary Algorithms (EAs). The search space is partitioned into so-called Satisfiability Classes (SC), where each region represents the quality of the optimization criteria. Applying the SCs to individuals in a population a fitness can be assigned during the EA run. The model also allows the handling of infeasible regions and restrictions in the search space. Additionally, different priorities for optimization objectives can be modeled. Advantages of the model over previous approaches are discussed and an application is given that shows the superiority of the method for modeling MOO problems.", 
    "editor": [
      {
        "familyName": "Reusch", 
        "givenName": "Bernd", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-48774-3_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-66050-7", 
        "978-3-540-48774-6"
      ], 
      "name": "Computational Intelligence", 
      "type": "Book"
    }, 
    "keywords": [
      "multi-objective optimization", 
      "evolutionary algorithm", 
      "search space", 
      "dependent subproblems", 
      "MOO problem", 
      "optimization problem", 
      "infeasible regions", 
      "optimization objective", 
      "EA run", 
      "optimization criteria", 
      "optimization", 
      "algorithm", 
      "previous approaches", 
      "problem", 
      "space", 
      "class", 
      "subproblems", 
      "new model", 
      "different priorities", 
      "model", 
      "solution", 
      "superiority", 
      "approach", 
      "applications", 
      "restriction", 
      "requirements", 
      "advantages", 
      "criteria", 
      "run", 
      "objective", 
      "handling", 
      "quality", 
      "method", 
      "priority", 
      "region", 
      "fitness", 
      "population", 
      "individuals", 
      "Satisfiability Classes"
    ], 
    "name": "Multi-objective Optimization in Evolutionary Algorithms Using Satisfiability Classes", 
    "pagination": "108-117", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020447058"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-48774-3_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-48774-3_14", 
      "https://app.dimensions.ai/details/publication/pub.1020447058"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_155.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-48774-3_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-48774-3_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-48774-3_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-48774-3_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-48774-3_14'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      66 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-48774-3_14 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author Nac5f10b7c37345ff81cc4423383a8b06
5 schema:datePublished 1999
6 schema:datePublishedReg 1999-01-01
7 schema:description Many optimization problems consist of several mutually dependent subproblems, where the resulting solutions must satisfy all requirements.We propose a new model for Multi-Objective Optimization (MOO) in Evolutionary Algorithms (EAs). The search space is partitioned into so-called Satisfiability Classes (SC), where each region represents the quality of the optimization criteria. Applying the SCs to individuals in a population a fitness can be assigned during the EA run. The model also allows the handling of infeasible regions and restrictions in the search space. Additionally, different priorities for optimization objectives can be modeled. Advantages of the model over previous approaches are discussed and an application is given that shows the superiority of the method for modeling MOO problems.
8 schema:editor N51aa6b7937c249328176271c03035396
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N2f6200c8f2cf44b3b650eb9858508adb
13 schema:keywords EA run
14 MOO problem
15 Satisfiability Classes
16 advantages
17 algorithm
18 applications
19 approach
20 class
21 criteria
22 dependent subproblems
23 different priorities
24 evolutionary algorithm
25 fitness
26 handling
27 individuals
28 infeasible regions
29 method
30 model
31 multi-objective optimization
32 new model
33 objective
34 optimization
35 optimization criteria
36 optimization objective
37 optimization problem
38 population
39 previous approaches
40 priority
41 problem
42 quality
43 region
44 requirements
45 restriction
46 run
47 search space
48 solution
49 space
50 subproblems
51 superiority
52 schema:name Multi-objective Optimization in Evolutionary Algorithms Using Satisfiability Classes
53 schema:pagination 108-117
54 schema:productId N5776c0ec19d44d85a3b6e3046874e13d
55 Nb1f27140c2d34ba09ff41d32c0770746
56 schema:publisher N8931cbd837914dabb625e49033c16db7
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020447058
58 https://doi.org/10.1007/3-540-48774-3_14
59 schema:sdDatePublished 2022-01-01T19:09
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N11402154d5f547ceb5cc0270f2d44470
62 schema:url https://doi.org/10.1007/3-540-48774-3_14
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N11402154d5f547ceb5cc0270f2d44470 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N2f6200c8f2cf44b3b650eb9858508adb schema:isbn 978-3-540-48774-6
69 978-3-540-66050-7
70 schema:name Computational Intelligence
71 rdf:type schema:Book
72 N51aa6b7937c249328176271c03035396 rdf:first Nd0f35c71d4ad424987abe631e2e68729
73 rdf:rest rdf:nil
74 N5776c0ec19d44d85a3b6e3046874e13d schema:name dimensions_id
75 schema:value pub.1020447058
76 rdf:type schema:PropertyValue
77 N678162852c744c7782ddac6a09bfd61f rdf:first sg:person.0654323315.29
78 rdf:rest rdf:nil
79 N8931cbd837914dabb625e49033c16db7 schema:name Springer Nature
80 rdf:type schema:Organisation
81 Nac5f10b7c37345ff81cc4423383a8b06 rdf:first sg:person.011501544041.69
82 rdf:rest Ne300ecb7bdcb4dfdaa55ea2e86b8775e
83 Nb1f27140c2d34ba09ff41d32c0770746 schema:name doi
84 schema:value 10.1007/3-540-48774-3_14
85 rdf:type schema:PropertyValue
86 Nd0f35c71d4ad424987abe631e2e68729 schema:familyName Reusch
87 schema:givenName Bernd
88 rdf:type schema:Person
89 Ne300ecb7bdcb4dfdaa55ea2e86b8775e rdf:first sg:person.014026337551.82
90 rdf:rest N678162852c744c7782ddac6a09bfd61f
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
95 schema:name Applied Mathematics
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
98 schema:name Numerical and Computational Mathematics
99 rdf:type schema:DefinedTerm
100 sg:person.011501544041.69 schema:affiliation grid-institutes:None
101 schema:familyName Drechsler
102 schema:givenName Nicole
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011501544041.69
104 rdf:type schema:Person
105 sg:person.014026337551.82 schema:affiliation grid-institutes:None
106 schema:familyName Drechsler
107 schema:givenName Rolf
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026337551.82
109 rdf:type schema:Person
110 sg:person.0654323315.29 schema:affiliation grid-institutes:None
111 schema:familyName Becker
112 schema:givenName Bernd
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654323315.29
114 rdf:type schema:Person
115 grid-institutes:None schema:alternateName Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany
116 schema:name Institute of Computer Science, Albert-Ludwigs-University, 79110, Freiburg im Breisgau, Germany
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...