Subpixel Stereo Matching by Robust Estimation of Local Distortion Using Gabor Filters View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-06-03

AUTHORS

Peter Werth , Stefan Scherer , Axel Pinz

ABSTRACT

Area-based stereo matching algorithms are based on the support of a surrounding area to establish a point-to-point correspondence in two images. Two important problems arise in this context: How to obtain subpixel information and how to choose the optimal surrounding area. In this paper we present a non-iterative two-step algorithm for subpixel accurate stereo matching by using an adaptive window. In contrast to existing algorithms the window is not restricted to a rectangle but can be of any general shape. Starting from an initial sparse disparity estimate, the first step is to find the general shape of the window. This is performed by estimating the local disparity of each pixel in a box of maximum size using a bank of Gabor filters, and by applying a consistency constraint. In the second step the projective distortion is computed using the masked window. The performed experiments show the accurate and robust behavior of the proposed algorithm. More... »

PAGES

641-648

Book

TITLE

Computer Analysis of Images and Patterns

ISBN

978-3-540-66366-9
978-3-540-48375-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-48375-6_76

DOI

http://dx.doi.org/10.1007/3-540-48375-6_76

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045435340


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Austrian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4299.6", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria", 
            "Erich-Schmid-Institut of Materials Science, Austrian Academy of Sciences, Jahnstr. 12, A-8700, Leoben, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Werth", 
        "givenName": "Peter", 
        "id": "sg:person.011431124545.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011431124545.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scherer", 
        "givenName": "Stefan", 
        "id": "sg:person.011276270727.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276270727.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinz", 
        "givenName": "Axel", 
        "id": "sg:person.012033065653.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065653.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0031-3203(91)90143-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000127145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(91)90143-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000127145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0262-8856(98)00065-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001915470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0054731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026689321", 
          "https://doi.org/10.1007/bfb0054731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001380050077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037549938", 
          "https://doi.org/10.1007/s001380050077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.310690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.735802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1999.786920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093579978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.2.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099320318"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-06-03", 
    "datePublishedReg": "2003-06-03", 
    "description": "Area-based stereo matching algorithms are based on the support of a surrounding area to establish a point-to-point correspondence in two images. Two important problems arise in this context: How to obtain subpixel information and how to choose the optimal surrounding area. In this paper we present a non-iterative two-step algorithm for subpixel accurate stereo matching by using an adaptive window. In contrast to existing algorithms the window is not restricted to a rectangle but can be of any general shape. Starting from an initial sparse disparity estimate, the first step is to find the general shape of the window. This is performed by estimating the local disparity of each pixel in a box of maximum size using a bank of Gabor filters, and by applying a consistency constraint. In the second step the projective distortion is computed using the masked window. The performed experiments show the accurate and robust behavior of the proposed algorithm.", 
    "editor": [
      {
        "familyName": "Solina", 
        "givenName": "Franc", 
        "type": "Person"
      }, 
      {
        "familyName": "Leonardis", 
        "givenName": "Ale\u0161s", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-48375-6_76", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-66366-9", 
        "978-3-540-48375-5"
      ], 
      "name": "Computer Analysis of Images and Patterns", 
      "type": "Book"
    }, 
    "name": "Subpixel Stereo Matching by Robust Estimation of Local Distortion Using Gabor Filters", 
    "pagination": "641-648", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-48375-6_76"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d86dcf122cbcc82654fbbdfbb115dd803f1a56c6f1ce5d2c0c02bfae200bac99"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045435340"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-48375-6_76", 
      "https://app.dimensions.ai/details/publication/pub.1045435340"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99812_00000003.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F3-540-48375-6_76"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-48375-6_76'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-48375-6_76'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-48375-6_76'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-48375-6_76'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      34 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-48375-6_76 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndc182bc170bc4e52ade42bbca2377730
4 schema:citation sg:pub.10.1007/bfb0054731
5 sg:pub.10.1007/s001380050077
6 https://doi.org/10.1016/0031-3203(91)90143-s
7 https://doi.org/10.1016/s0262-8856(98)00065-1
8 https://doi.org/10.1109/34.310690
9 https://doi.org/10.1109/34.735802
10 https://doi.org/10.1109/cvpr.1999.786920
11 https://doi.org/10.5244/c.2.23
12 schema:datePublished 2003-06-03
13 schema:datePublishedReg 2003-06-03
14 schema:description Area-based stereo matching algorithms are based on the support of a surrounding area to establish a point-to-point correspondence in two images. Two important problems arise in this context: How to obtain subpixel information and how to choose the optimal surrounding area. In this paper we present a non-iterative two-step algorithm for subpixel accurate stereo matching by using an adaptive window. In contrast to existing algorithms the window is not restricted to a rectangle but can be of any general shape. Starting from an initial sparse disparity estimate, the first step is to find the general shape of the window. This is performed by estimating the local disparity of each pixel in a box of maximum size using a bank of Gabor filters, and by applying a consistency constraint. In the second step the projective distortion is computed using the masked window. The performed experiments show the accurate and robust behavior of the proposed algorithm.
15 schema:editor N53cf42d280424c8baf4c112a7c18b7a8
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Nef43a9cc44ef4e6db465d4a60c130374
20 schema:name Subpixel Stereo Matching by Robust Estimation of Local Distortion Using Gabor Filters
21 schema:pagination 641-648
22 schema:productId N8ea3f163e5cc45b589d1e7f7ce07ee86
23 Na2f1dc4872854fd38d84c8a2d1a53ed9
24 Nd14ec7e3d4fe49a2934bee1a82e9eacf
25 schema:publisher N425f261ecbd14639a5a58e30b4442954
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045435340
27 https://doi.org/10.1007/3-540-48375-6_76
28 schema:sdDatePublished 2019-04-16T05:32
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Na6207f4a41ae4befbea00cdca8245fce
31 schema:url https://link.springer.com/10.1007%2F3-540-48375-6_76
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N23825490a3a24b4ea35e8afe4e8c1e33 schema:familyName Leonardis
36 schema:givenName Alešs
37 rdf:type schema:Person
38 N425f261ecbd14639a5a58e30b4442954 schema:location Berlin, Heidelberg
39 schema:name Springer Berlin Heidelberg
40 rdf:type schema:Organisation
41 N4385f22788a2460796967c6bf50821a7 rdf:first sg:person.012033065653.49
42 rdf:rest rdf:nil
43 N53cf42d280424c8baf4c112a7c18b7a8 rdf:first N8fc03ce40a1547bb8ec3b819f4cbcd1a
44 rdf:rest N635230416af744ccb8103f502fca5362
45 N635230416af744ccb8103f502fca5362 rdf:first N23825490a3a24b4ea35e8afe4e8c1e33
46 rdf:rest rdf:nil
47 N75252d7c9e6a4097be71d38370094a2c rdf:first sg:person.011276270727.36
48 rdf:rest N4385f22788a2460796967c6bf50821a7
49 N8ea3f163e5cc45b589d1e7f7ce07ee86 schema:name doi
50 schema:value 10.1007/3-540-48375-6_76
51 rdf:type schema:PropertyValue
52 N8fc03ce40a1547bb8ec3b819f4cbcd1a schema:familyName Solina
53 schema:givenName Franc
54 rdf:type schema:Person
55 Na2f1dc4872854fd38d84c8a2d1a53ed9 schema:name readcube_id
56 schema:value d86dcf122cbcc82654fbbdfbb115dd803f1a56c6f1ce5d2c0c02bfae200bac99
57 rdf:type schema:PropertyValue
58 Na6207f4a41ae4befbea00cdca8245fce schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nd14ec7e3d4fe49a2934bee1a82e9eacf schema:name dimensions_id
61 schema:value pub.1045435340
62 rdf:type schema:PropertyValue
63 Ndc182bc170bc4e52ade42bbca2377730 rdf:first sg:person.011431124545.92
64 rdf:rest N75252d7c9e6a4097be71d38370094a2c
65 Nef43a9cc44ef4e6db465d4a60c130374 schema:isbn 978-3-540-48375-5
66 978-3-540-66366-9
67 schema:name Computer Analysis of Images and Patterns
68 rdf:type schema:Book
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.011276270727.36 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
76 schema:familyName Scherer
77 schema:givenName Stefan
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276270727.36
79 rdf:type schema:Person
80 sg:person.011431124545.92 schema:affiliation https://www.grid.ac/institutes/grid.4299.6
81 schema:familyName Werth
82 schema:givenName Peter
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011431124545.92
84 rdf:type schema:Person
85 sg:person.012033065653.49 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
86 schema:familyName Pinz
87 schema:givenName Axel
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065653.49
89 rdf:type schema:Person
90 sg:pub.10.1007/bfb0054731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026689321
91 https://doi.org/10.1007/bfb0054731
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s001380050077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037549938
94 https://doi.org/10.1007/s001380050077
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0031-3203(91)90143-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1000127145
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s0262-8856(98)00065-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001915470
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/34.310690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156046
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/34.735802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156885
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/cvpr.1999.786920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093579978
105 rdf:type schema:CreativeWork
106 https://doi.org/10.5244/c.2.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099320318
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
109 schema:name Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.4299.6 schema:alternateName Austrian Academy of Sciences
112 schema:name Erich-Schmid-Institut of Materials Science, Austrian Academy of Sciences, Jahnstr. 12, A-8700, Leoben, Austria
113 Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010, Graz, Austria
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...