Decision-Level Fusion in Fingerprint Verification View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001-06-22

AUTHORS

Salil Prabhakar , Anil K. Jain

ABSTRACT

A scheme is proposed for classifier combination at decision level which stresses the importance of classifier selection during combination. The proposed scheme is optimal (in the Neyman-Pearson sense) when sufficient data are available to obtain reasonable estimates of the join densities of classifier outputs. Four different fingerprint matching algorithms are combined using the proposed scheme to improve the accuracy of a fingerprint verification system. Experiments conducted on a large fingerprint database (~ 2,700 fingerprints) confirm the effectiveness of the proposed integration scheme. An overall matching performance increase of ~ 3% is achieved. We further show that a combination of multiple impressions or multiple fingers improves the verification performance by more than 4% and 5%, respectively. Analysis of the results provide some insight into the various decision-level classifier combination strategies. More... »

PAGES

88-98

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-48219-9_9

DOI

http://dx.doi.org/10.1007/3-540-48219-9_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047049541


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prabhakar", 
        "givenName": "Salil", 
        "id": "sg:person.014036111605.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014036111605.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Anil K.", 
        "id": "sg:person.01031110710.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-06-22", 
    "datePublishedReg": "2001-06-22", 
    "description": "A scheme is proposed for classifier combination at decision level which stresses the importance of classifier selection during combination. The proposed scheme is optimal (in the Neyman-Pearson sense) when sufficient data are available to obtain reasonable estimates of the join densities of classifier outputs. Four different fingerprint matching algorithms are combined using the proposed scheme to improve the accuracy of a fingerprint verification system. Experiments conducted on a large fingerprint database (~ 2,700 fingerprints) confirm the effectiveness of the proposed integration scheme. An overall matching performance increase of ~ 3% is achieved. We further show that a combination of multiple impressions or multiple fingers improves the verification performance by more than 4% and 5%, respectively. Analysis of the results provide some insight into the various decision-level classifier combination strategies.", 
    "editor": [
      {
        "familyName": "Kittler", 
        "givenName": "Josef", 
        "type": "Person"
      }, 
      {
        "familyName": "Roli", 
        "givenName": "Fabio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-48219-9_9", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-42284-6", 
        "978-3-540-48219-2"
      ], 
      "name": "Multiple Classifier Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "large fingerprint databases", 
      "fingerprint verification system", 
      "decision-level fusion", 
      "classifier combination strategies", 
      "fingerprint verification", 
      "verification performance", 
      "verification system", 
      "fingerprint database", 
      "classifier selection", 
      "classifier outputs", 
      "classifier combination", 
      "decision level", 
      "multiple impressions", 
      "different fingerprints", 
      "performance increase", 
      "multiple fingers", 
      "scheme", 
      "algorithm", 
      "verification", 
      "accuracy", 
      "combination strategies", 
      "database", 
      "fingerprints", 
      "sufficient data", 
      "fusion", 
      "performance", 
      "effectiveness", 
      "system", 
      "integration scheme", 
      "selection", 
      "output", 
      "data", 
      "experiments", 
      "combination", 
      "strategies", 
      "results", 
      "finger", 
      "analysis", 
      "insights", 
      "impression", 
      "importance", 
      "estimates", 
      "levels", 
      "reasonable estimates", 
      "increase", 
      "density"
    ], 
    "name": "Decision-Level Fusion in Fingerprint Verification", 
    "pagination": "88-98", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047049541"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-48219-9_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-48219-9_9", 
      "https://app.dimensions.ai/details/publication/pub.1047049541"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_309.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-48219-9_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-48219-9_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-48219-9_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-48219-9_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-48219-9_9'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      22 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-48219-9_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd7e963468870410db5130bf21249b5a4
4 schema:datePublished 2001-06-22
5 schema:datePublishedReg 2001-06-22
6 schema:description A scheme is proposed for classifier combination at decision level which stresses the importance of classifier selection during combination. The proposed scheme is optimal (in the Neyman-Pearson sense) when sufficient data are available to obtain reasonable estimates of the join densities of classifier outputs. Four different fingerprint matching algorithms are combined using the proposed scheme to improve the accuracy of a fingerprint verification system. Experiments conducted on a large fingerprint database (~ 2,700 fingerprints) confirm the effectiveness of the proposed integration scheme. An overall matching performance increase of ~ 3% is achieved. We further show that a combination of multiple impressions or multiple fingers improves the verification performance by more than 4% and 5%, respectively. Analysis of the results provide some insight into the various decision-level classifier combination strategies.
7 schema:editor Nc4fdc132aa5a457fb13e74a18964e8b0
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N5183dc4131aa4a7580ccb34b44e701cb
11 schema:keywords accuracy
12 algorithm
13 analysis
14 classifier combination
15 classifier combination strategies
16 classifier outputs
17 classifier selection
18 combination
19 combination strategies
20 data
21 database
22 decision level
23 decision-level fusion
24 density
25 different fingerprints
26 effectiveness
27 estimates
28 experiments
29 finger
30 fingerprint database
31 fingerprint verification
32 fingerprint verification system
33 fingerprints
34 fusion
35 importance
36 impression
37 increase
38 insights
39 integration scheme
40 large fingerprint databases
41 levels
42 multiple fingers
43 multiple impressions
44 output
45 performance
46 performance increase
47 reasonable estimates
48 results
49 scheme
50 selection
51 strategies
52 sufficient data
53 system
54 verification
55 verification performance
56 verification system
57 schema:name Decision-Level Fusion in Fingerprint Verification
58 schema:pagination 88-98
59 schema:productId N0c3c9a66cbab49ed96e455876ca28ea8
60 N50516acbcc594d489de07c928626dbfc
61 schema:publisher N069ed4b0b0ce4408923496a1126e761f
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047049541
63 https://doi.org/10.1007/3-540-48219-9_9
64 schema:sdDatePublished 2022-12-01T06:50
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nd825ee57c1cc4f45887ff8fa3c5a8523
67 schema:url https://doi.org/10.1007/3-540-48219-9_9
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N069ed4b0b0ce4408923496a1126e761f schema:name Springer Nature
72 rdf:type schema:Organisation
73 N0c3c9a66cbab49ed96e455876ca28ea8 schema:name doi
74 schema:value 10.1007/3-540-48219-9_9
75 rdf:type schema:PropertyValue
76 N1d220921059a4bdcb4ec24c929cd7894 rdf:first sg:person.01031110710.30
77 rdf:rest rdf:nil
78 N50516acbcc594d489de07c928626dbfc schema:name dimensions_id
79 schema:value pub.1047049541
80 rdf:type schema:PropertyValue
81 N5183dc4131aa4a7580ccb34b44e701cb schema:isbn 978-3-540-42284-6
82 978-3-540-48219-2
83 schema:name Multiple Classifier Systems
84 rdf:type schema:Book
85 N59c91ae2679c4e648f624658c176f5d3 schema:familyName Kittler
86 schema:givenName Josef
87 rdf:type schema:Person
88 Nb0dc31df4c2344f9b5d6ca6834cfc90f schema:familyName Roli
89 schema:givenName Fabio
90 rdf:type schema:Person
91 Nc4fdc132aa5a457fb13e74a18964e8b0 rdf:first N59c91ae2679c4e648f624658c176f5d3
92 rdf:rest Nd1455f26055d44969021bfe3aa2a5d90
93 Nd1455f26055d44969021bfe3aa2a5d90 rdf:first Nb0dc31df4c2344f9b5d6ca6834cfc90f
94 rdf:rest rdf:nil
95 Nd7e963468870410db5130bf21249b5a4 rdf:first sg:person.014036111605.32
96 rdf:rest N1d220921059a4bdcb4ec24c929cd7894
97 Nd825ee57c1cc4f45887ff8fa3c5a8523 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
103 schema:name Artificial Intelligence and Image Processing
104 rdf:type schema:DefinedTerm
105 sg:person.01031110710.30 schema:affiliation grid-institutes:grid.17088.36
106 schema:familyName Jain
107 schema:givenName Anil K.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30
109 rdf:type schema:Person
110 sg:person.014036111605.32 schema:affiliation grid-institutes:grid.17088.36
111 schema:familyName Prabhakar
112 schema:givenName Salil
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014036111605.32
114 rdf:type schema:Person
115 grid-institutes:grid.17088.36 schema:alternateName Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI, USA
116 schema:name Dept. of Comp. Sci. and Eng., Michigan State University, 48824, East Lansing, MI, USA
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...