A Combinatorial Approach to Threshold Schemes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1988

AUTHORS

D. R. Stinson , S. A. Vanstone

ABSTRACT

We investigate the combinatorial properties of threshold schemes. Informally, a (t, w)-threshold scheme is a way of distributing partial information (shadows) to w participants, so that any t of them can easily calculate a key, but no subset of fewer than t participants can determine the key. Our interest is in perfect threshold schemes: no subset of fewer than t participants can determine any partial information regarding the key. We give a combinatorial characterization of a certain type of perfect threshold scheme. We also investigate the maximum number of keys which a perfect (t, w)-threshold scheme can incorporate, as a function of t, w, and the total number of possible shadows, v. This maximum can be attained when there is a Steiner system S(t, w, v) which can be partitioned into Steiner systems S(t − 1. w, v). Using known constructions for such Steiner systems, we present two new classes of perfect threshold schemes, and discuss their implementation. More... »

PAGES

330-339

Book

TITLE

Advances in Cryptology — CRYPTO ’87

ISBN

978-3-540-18796-7
978-3-540-48184-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/3-540-48184-2_28

DOI

http://dx.doi.org/10.1007/3-540-48184-2_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013825093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo, Waterloo", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Manitoba, Canada", 
            "University of Waterloo, Waterloo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stinson", 
        "givenName": "D. R.", 
        "id": "sg:person.014151373147.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151373147.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo, Waterloo", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Manitoba, Canada", 
            "University of Waterloo, Waterloo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanstone", 
        "givenName": "S. A.", 
        "id": "sg:person.010344544767.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1988", 
    "datePublishedReg": "1988-01-01", 
    "description": "We investigate the combinatorial properties of threshold schemes. Informally, a (t, w)-threshold scheme is a way of distributing partial information (shadows) to w participants, so that any t of them can easily calculate a key, but no subset of fewer than t participants can determine the key. Our interest is in perfect threshold schemes: no subset of fewer than t participants can determine any partial information regarding the key. We give a combinatorial characterization of a certain type of perfect threshold scheme. We also investigate the maximum number of keys which a perfect (t, w)-threshold scheme can incorporate, as a function of t, w, and the total number of possible shadows, v. This maximum can be attained when there is a Steiner system S(t, w, v) which can be partitioned into Steiner systems S(t \u2212 1. w, v). Using known constructions for such Steiner systems, we present two new classes of perfect threshold schemes, and discuss their implementation.", 
    "editor": [
      {
        "familyName": "Pomerance", 
        "givenName": "Carl", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/3-540-48184-2_28", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-18796-7", 
        "978-3-540-48184-3"
      ], 
      "name": "Advances in Cryptology \u2014 CRYPTO \u201987", 
      "type": "Book"
    }, 
    "keywords": [
      "Steiner systems", 
      "partial information", 
      "perfect threshold schemes", 
      "combinatorial properties", 
      "combinatorial characterization", 
      "threshold scheme", 
      "scheme", 
      "possible shadows", 
      "maximum number", 
      "combinatorial approach", 
      "new class", 
      "WS participants", 
      "certain types", 
      "system", 
      "t participants", 
      "class", 
      "number", 
      "properties", 
      "subset", 
      "participants", 
      "function", 
      "approach", 
      "total number", 
      "construction", 
      "maximum", 
      "implementation", 
      "information", 
      "perfect", 
      "interest", 
      "way", 
      "key", 
      "types", 
      "characterization", 
      "shadow"
    ], 
    "name": "A Combinatorial Approach to Threshold Schemes", 
    "pagination": "330-339", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013825093"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/3-540-48184-2_28"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/3-540-48184-2_28", 
      "https://app.dimensions.ai/details/publication/pub.1013825093"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_103.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/3-540-48184-2_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/3-540-48184-2_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/3-540-48184-2_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/3-540-48184-2_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/3-540-48184-2_28'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      22 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/3-540-48184-2_28 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Ndeb95037a49d4f1385645a88dc5a7fb8
4 schema:datePublished 1988
5 schema:datePublishedReg 1988-01-01
6 schema:description We investigate the combinatorial properties of threshold schemes. Informally, a (t, w)-threshold scheme is a way of distributing partial information (shadows) to w participants, so that any t of them can easily calculate a key, but no subset of fewer than t participants can determine the key. Our interest is in perfect threshold schemes: no subset of fewer than t participants can determine any partial information regarding the key. We give a combinatorial characterization of a certain type of perfect threshold scheme. We also investigate the maximum number of keys which a perfect (t, w)-threshold scheme can incorporate, as a function of t, w, and the total number of possible shadows, v. This maximum can be attained when there is a Steiner system S(t, w, v) which can be partitioned into Steiner systems S(t − 1. w, v). Using known constructions for such Steiner systems, we present two new classes of perfect threshold schemes, and discuss their implementation.
7 schema:editor N9a6150adeaf84c87bf374222f24384dd
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N7006b7b71995468f8269d7df09c9a526
11 schema:keywords Steiner systems
12 WS participants
13 approach
14 certain types
15 characterization
16 class
17 combinatorial approach
18 combinatorial characterization
19 combinatorial properties
20 construction
21 function
22 implementation
23 information
24 interest
25 key
26 maximum
27 maximum number
28 new class
29 number
30 partial information
31 participants
32 perfect
33 perfect threshold schemes
34 possible shadows
35 properties
36 scheme
37 shadow
38 subset
39 system
40 t participants
41 threshold scheme
42 total number
43 types
44 way
45 schema:name A Combinatorial Approach to Threshold Schemes
46 schema:pagination 330-339
47 schema:productId N64882eb751c0418a98aeb962362ec547
48 Na4f5228a26eb4befb6d131cc1988ea7a
49 schema:publisher N35884b5b966e4e40920a2293f2f0edf8
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013825093
51 https://doi.org/10.1007/3-540-48184-2_28
52 schema:sdDatePublished 2022-10-01T06:52
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N04c622b6575e469ab7475856257c1e0d
55 schema:url https://doi.org/10.1007/3-540-48184-2_28
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N04c622b6575e469ab7475856257c1e0d schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N0ec1c4dc4aa542a8857488a63222be0f schema:familyName Pomerance
62 schema:givenName Carl
63 rdf:type schema:Person
64 N35884b5b966e4e40920a2293f2f0edf8 schema:name Springer Nature
65 rdf:type schema:Organisation
66 N64882eb751c0418a98aeb962362ec547 schema:name doi
67 schema:value 10.1007/3-540-48184-2_28
68 rdf:type schema:PropertyValue
69 N64a1a81e4ce645ca90ddea3e0beae3f3 rdf:first sg:person.010344544767.07
70 rdf:rest rdf:nil
71 N7006b7b71995468f8269d7df09c9a526 schema:isbn 978-3-540-18796-7
72 978-3-540-48184-3
73 schema:name Advances in Cryptology — CRYPTO ’87
74 rdf:type schema:Book
75 N9a6150adeaf84c87bf374222f24384dd rdf:first N0ec1c4dc4aa542a8857488a63222be0f
76 rdf:rest rdf:nil
77 Na4f5228a26eb4befb6d131cc1988ea7a schema:name dimensions_id
78 schema:value pub.1013825093
79 rdf:type schema:PropertyValue
80 Ndeb95037a49d4f1385645a88dc5a7fb8 rdf:first sg:person.014151373147.58
81 rdf:rest N64a1a81e4ce645ca90ddea3e0beae3f3
82 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
83 schema:name Medical and Health Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
86 schema:name Clinical Sciences
87 rdf:type schema:DefinedTerm
88 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
89 schema:familyName Vanstone
90 schema:givenName S. A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
92 rdf:type schema:Person
93 sg:person.014151373147.58 schema:affiliation grid-institutes:grid.46078.3d
94 schema:familyName Stinson
95 schema:givenName D. R.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151373147.58
97 rdf:type schema:Person
98 grid-institutes:grid.46078.3d schema:alternateName University of Waterloo, Waterloo
99 schema:name University of Manitoba, Canada
100 University of Waterloo, Waterloo
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...